D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
FGH30N6S2 / FGP30N6S2 / FGB30N6S2
August 2003
FGH30N6S2 / FGP30N6S2 / FGB30N6S2
600V, SMPS II Series N-Channel IGBT
General Description
The FGH30N6S2, FGP30N6S2, and FGB30N6S2 are Low
Gate Charge, Low Plateau Voltage SMPS II IGBTs combin-
ing the fast switching speed of the SMPS IGBTs along with
lower gate charge and plateau voltage and avalanche capa-
bility (UIS). These LGC devices shorten delay times, and
reduce the power requirement of the gate drive. These de-
vices are ideally suited for high voltage switched mode pow-
er supply applications where low conduction loss, fast
switching times and UIS capability are essential. SMPS II
LGC devices have been specially designed for:
•
•
•
•
•
•
Power Factor Correction (PFC) circuits
Full bridge topologies
Half bridge topologies
Push-Pull circuits
Uninterruptible power supplies
Zero voltage and zero current switching circuits
Features
• 100kHz Operation at 390V, 14A
• 200kHZ Operation at 390V, 9A
• 600V Switching SOA Capability
• Typical Fall Time. . . . . . . . . . . 90ns at TJ = 125
o
C
• Low Gate Charge . . . . . . . . . 23nC at V
GE
= 15V
• Low Plateau Voltage . . . . . . . . . . . . .6.5V Typical
• UIS Rated . . . . . . . . . . . . . . . . . . . . . . . . . 150mJ
• Low Conduction Loss
Formerly Developmental Type TA49367.
Package
TO-247
E
C
G
Symbol
C
TO-220AB
E
C
G
TO-263AB
G
G
E
COLLECTOR
(Back-Metal)
COLLECTOR
(Flange)
E
Device Maximum Ratings
T
C
= 25°C unless otherwise noted
Symbol
BV
CES
I
C25
I
C110
I
CM
V
GES
V
GEM
SSOA
E
AS
P
D
T
J
T
STG
Parameter
Collector to Emitter Breakdown Voltage
Collector Current Continuous, T
C
= 25°C
Collector Current Continuous, T
C
= 110°C
Collector Current Pulsed (Note 1)
Gate to Emitter Voltage Continuous
Gate to Emitter Voltage Pulsed
Switching Safe Operating Area at T
J
= 150°C, Figure 2
Pulsed Avalanche Energy, I
CE
= 20A, L = 1.3mH, V
DD
= 50V
Power Dissipation Total T
C
= 25°C
Power Dissipation Derating T
C
> 25°C
Operating Junction Temperature Range
Storage Junction Temperature Range
Ratings
600
45
20
108
±20
±30
60A at 600V
150
167
1.33
-55 to 150
-55 to 150
mJ
W
W/°C
°C
°C
Units
V
A
A
A
V
V
CAUTION: Stresses above those listed in “Device Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and
operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. Pulse width limited by maximum junction temperature.
©2003 Fairchild Semiconductor Corporation
FGH30N6S2 / FGP30N6S2 / FGB30N6S2 Rev. A1
FGH30N6S2 / FGP30N6S2 / FGS30N6S2
Package Marking and Ordering Information
Device Marking
30N6S2
30N6S2
30N6S2
30N6S2
Device
FGH30N6S2
FGP30N6S2
FGB30N6S2
FGB30N6S2T
Package
TO-247
TO-220AB
TO-263AB
TO-263AB
Reel Size
Tube
Tube
Tube
330mm
Tape Width
N/A
N/A
N/A
24mm
Quantity
30 Units
50 Units
50 Units
800 Units
Electrical Characteristics
T
J
= 25°C unless otherwise noted
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
Off State Characteristics
BV
CES
BV
ECS
I
CES
I
GES
Collector to Emitter Breakdown Voltage
Emitter to Collector Breakdown Voltage
Collector to Emitter Leakage Current
Gate to Emitter Leakage Current
I
C
= 250µA, V
GE
= 0
I
C
= -10mA, V
GE
= 0
V
CE
= 600V
V
GE
= ± 20V
T
J
= 25°C
T
J
= 125°C
600
20
-
-
-
-
-
-
-
-
-
-
100
2
±250
V
V
µA
mA
nA
On State Characteristics
V
CE(SAT)
Collector to Emitter Saturation Voltage
I
C
= 12A,
V
GE
= 15V
T
J
= 25°C
T
J
= 125°C
-
-
2.0
1.7
2.5
2.0
V
V
Dynamic Characteristics
Q
G(ON)
V
GE(TH)
V
GEP
Gate Charge
Gate to Emitter Threshold Voltage
Gate to Emitter Plateau Voltage
I
C
= 12A,
V
CE
= 300V
V
GE
= 15V
V
GE
= 20V
-
-
3.5
-
23
26
4.3
6.5
29
33
5.0
8.0
nC
nC
V
V
I
C
= 250µA, V
CE
= 600V
I
C
= 12A, V
CE
= 300V
Switching Characteristics
SSOA
t
d(ON)I
t
rI
t
d(OFF)I
t
fI
E
ON1
E
ON2
E
OFF
t
d(ON)I
t
rI
t
d(OFF)I
t
fI
E
ON1
E
ON2
E
OFF
Switching SOA
Current Turn-On Delay Time
Current Rise Time
Current Turn-Off Delay Time
Current Fall Time
Turn-On Energy (Note 2)
Turn-On Energy (Note 2)
Turn-Off Energy (Note 3)
Current Turn-On Delay Time
Current Rise Time
Current Turn-Off Delay Time
Current Fall Time
Turn-On Energy (Note 2)
Turn-On Energy (Note 2)
Turn-Off Energy (Note 3)
IGBT and Diode at T
J
= 125°C
I
CE
= 12A,
V
CE
= 390V,
V
GE
= 15V,
R
G
= 10Ω
L = 200µH
Test Circuit - Figure 20
T
J
= 150°C, R
G
= 10Ω, V
GE
=
15V, L = 100µH, V
CE
= 600V
60
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
10
40
53
55
110
100
11
17
73
90
55
160
250
-
-
-
-
-
-
-
150
-
-
100
100
-
200
350
A
ns
ns
ns
ns
µJ
µJ
µJ
ns
ns
ns
ns
µJ
µJ
µJ
IGBT and Diode at T
J
= 25°C,
I
CE
= 12A,
V
CE
= 390V,
V
GE
= 15V,
R
G
= 10Ω
L = 200µH
Test Circuit - Figure 20
Thermal Characteristics
R
θJC
NOTE:
2.
Values
Thermal Resistance Junction-Case
-
-
0.75
°C/W
for two Turn-On loss conditions are shown for the convenience of the circuit designer. E
ON1
is the turn-on loss
of the IGBT only. E
ON2
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T
J
as the IGBT. The diode type is specified in figure 20.
3.
Turn-Off
Energy Loss (E
OFF
) is defined as the integral of the instantaneous power loss starting at the trailing edge of
the input pulse and ending at the point where the collector current equals zero (I
CE
= 0A). All devices were tested per
JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produc-
es the true total Turn-Off Energy Loss.
©2003 Fairchild Semiconductor Corporation
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1
FGH30N6S2 / FGP30N6S2 / FGS30N6S2
Typical Performance Curves
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
50
I
CE
, DC COLLECTOR CURRENT (A)
70
T
J
= 150
o
C, R
G
= 10Ω, V
GE
= 15V, L = 100µH
60
50
40
30
20
10
0
0
100
200
300
400
500
600
700
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
40
30
20
10
0
25
50
T
C
75
100
125
150
, CASE TEMPERATURE (
o
C)
Figure 1. DC Collector Current vs Case
Temperature
1000
f
MAX
, OPERATING FREQUENCY (kHz)
T
C
75
o
C
V
GE
= 10V
V
GE
= 15V
Figure 2. Minimum Switching Safe Operating Area
t
SC
, SHORT CIRCUIT WITHSTAND TIME (µs)
V
CE
= 390V, R
G
= 10Ω, T
J
= 125
o
C
10
300
8
t
SC
6
I
SC
250
100
f
MAX1
= 0.05 / (t
d(OFF)I
+ t
d(ON)I
)
f
MAX2
= (P
D
- P
C
) / (E
ON2
+ E
OFF
)
P
C
= CONDUCTION DISSIPATION
(DUTY FACTOR = 50%)
R
ØJC
= 0.49
o
C/W, SEE NOTES
T
J
= 125
o
C, R
G
= 3Ω L = 200µH, V
CE
= 390V
,
200
4
150
2
9
10
11
12
13
14
15
10
1
10
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
20
30
100
16
V
GE
, GATE TO EMITTER VOLTAGE (V)
Figure 3. Operating Frequency vs Collector to
Emitter Current
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
18
16
14
12
10
8
6
T
J
= 150
o
C
4
2
0
0.50
T
J
= 25
o
C
T
J
= 125
o
C
DUTY CYCLE < 0.5%, V
GE
= 10V
PULSE DURATION = 250µs
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
Figure 4. Short Circuit Withstand Time
18
16
14
12
10
8
6
4
2
0
.5
.75
1
1.25
1.50
T
J
= 25
o
C
1.75
2.0
2.25
T
J
= 150
o
C
DUTY CYCLE < 0.5%, V
GE
=15V
PULSE DURATION = 250µs
T
J
= 125
o
C
0.75
1.00
1.25
1.50
1.75
2.00
2.25
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
Figure 5. Collector to Emitter On-State Voltage
Figure 6. Collector to Emitter On-State Voltage
©2003 Fairchild Semiconductor Corporation
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1
I
SC
, PEAK SHORT CIRCUIT CURRENT (A)
12
350
FGH30N6S2 / FGP30N6S2 / FGS30N6S2
Typical Performance Curves
(Continued)
400
E
ON2
, TURN-ON ENERGY LOSS (µJ)
R
G
= 10Ω, L = 500µH, V
CE
= 390V
350
300
T
J
= 125
o
C, V
GE
= 10V, V
GE
= 15V
250
200
150
100
T
J
= 25
o
C, V
GE
= 10V, V
GE
= 15V
50
0
0
5
10
15
20
25
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
E
OFF
TURN-OFF ENERGY LOSS (µJ)
600
R
G
= 10Ω, L = 500µH, V
CE
= 390V
500
400
T
J
= 125
o
C, V
GE
= 10V, V
GE
= 15V
300
200
100
T
J
= 25
o
C, V
GE
= 10V, V
GE
= 15V
0
0
5
10
15
20
25
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
Figure 7. Turn-On Energy Loss vs Collector to
Emitter Current
16
t
d(ON)I
, TURN-ON DELAY TIME (ns)
R
G
= 10Ω L = 500µH, V
CE
= 390V
,
14
12
10
T
J
= 25
o
C, T
J
= 125
o
C, V
GE
= 10V
8
6
4
T
J
= 25
o
C, T
J
= 125
o
C, V
GE
= 15V
2
0
Figure 8. Turn-Off Energy Loss vs Collector to
Emitter Current
40
R
G
= 10Ω L = 500µH, V
CE
= 390V
,
35
t
rI
, RISE TIME (ns)
30
25
T
J
= 125
o
C, V
GE
= 15V, V
GE
= 10V
20
15
10
T
J
= 25
o
C, V
GE
= 10V, V
GE
=15V
5
0
0
5
10
15
20
25
0
5
10
15
20
25
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
Figure 9. Turn-On Delay Time vs Collector to
Emitter Current
90
t
d(OFF
) TURN-OFF DELAY TIME (ns)
R
G
= 10Ω, L = 500µH, V
CE
= 390V
80
70
60
50
40
30
20
0
5
10
15
20
25
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
Figure 10. Turn-On Rise Time vs Collector to
Emitter Current
120
R
G
= 10Ω L = 500µH, V
CE
= 390V
,
t
fI
, FALL TIME (ns)
100
T
J
= 125
o
C, V
GE
= 10V OR 15V
80
60
T
J
= 25
o
C, V
GE
= 10V OR 15V
40
0
5
10
15
20
25
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
Figure 11. Turn-Off Delay Time vs Collector to
Emitter Current
Figure 12. Fall Time vs Collector to Emitter
Current
©2003 Fairchild Semiconductor Corporation
FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1