D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
FQD5P20 / FQU5P20
May 2000
QFET
FQD5P20 / FQU5P20
200V P-Channel MOSFET
General Description
These P-Channel enhancement mode power field effect
transistors are produced using Fairchild’s proprietary,
planar stripe, DMOS technology.
This advanced technology has been especially tailored to
minimize on-state resistance, provide superior switching
performance, and withstand high energy pulse in the
avalanche and commutation mode. These devices are well
suited for high efficiency switching DC/DC converters.
TM
Features
•
•
•
•
•
-3.7A, -200V, R
DS(on)
= 1.4Ω @V
GS
= -10 V
Low gate charge ( typical 10 nC)
Low Crss ( typical 12 pF)
Fast switching
100% avalanche tested
S
D
G
!
!
●
●
▶ ▲
●
G
S
D-PAK
FQD Series
I-PAK
G D S
FQU Series
!
D
Absolute Maximum Ratings
Symbol
V
DSS
I
D
I
DM
V
GSS
E
AS
I
AR
E
AR
dv/dt
P
D
T
C
= 25°C unless otherwise noted
Parameter
Drain-Source Voltage
- Continuous (T
C
= 25°C)
Drain Current
- Continuous (T
C
= 100°C)
Drain Current
- Pulsed
(Note 1)
FQD5P20 / FQU5P20
-200
-3.7
-2.34
-14.8
±
30
(Note 2)
(Note 1)
(Note 1)
(Note 3)
Units
V
A
A
A
V
mJ
A
mJ
V/ns
W
W
W/°C
°C
°C
Gate-Source Voltage
Single Pulsed Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Power Dissipation (T
A
= 25°C) *
Power Dissipation (T
C
= 25°C)
330
-3.7
4.5
-5.5
2.5
45
0.36
-55 to +150
300
T
J
, T
STG
T
L
- Derate above 25°C
Operating and Storage Temperature Range
Maximum lead temperature for soldering purposes,
1/8" from case for 5 seconds
Thermal Characteristics
Symbol
R
θJC
R
θJA
R
θJA
Parameter
Thermal Resistance, Junction-to-Case
Thermal Resistance, Junction-to-Ambient *
Thermal Resistance, Junction-to-Ambient
Typ
--
--
--
Max
2.78
50
110
Units
°C/W
°C/W
°C/W
* When mounted on the minimum pad size recommended (PCB Mount)
©2000 Fairchild Semiconductor International
Rev. A, May 2000
FQD5P20 / FQU5P20
Elerical Characteristics
Symbol
Parameter
T
C
= 25°C unless otherwise noted
Test Conditions
Min
Typ
Max
Units
Off Characteristics
BV
DSS
∆BV
DSS
/
∆T
J
I
DSS
I
GSSF
I
GSSR
Drain-Source Breakdown Voltage
Breakdown Voltage Temperature
Coefficient
Zero Gate Voltage Drain Current
Gate-Body Leakage Current, Forward
Gate-Body Leakage Current, Reverse
V
GS
= 0 V, I
D
= -250
µA
I
D
= -250
µA,
Referenced to 25°C
V
DS
= -200 V, V
GS
= 0 V
V
DS
= -160 V, T
C
= 125°C
V
GS
= -30 V, V
DS
= 0 V
V
GS
= 30 V, V
DS
= 0 V
-200
--
--
--
--
--
--
-0.17
--
--
--
--
--
--
-1
-10
-100
100
V
V/°C
µA
µA
nA
nA
On Characteristics
V
GS(th)
R
DS(on)
g
FS
Gate Threshold Voltage
Static Drain-Source
On-Resistance
Forward Transconductance
V
DS
= V
GS
, I
D
= -250
µA
V
GS
= -10 V, I
D
= -1.85 A
V
DS
= -40 V, I
D
= -1.85 A
(Note 4)
-3.0
--
--
--
1.1
2.2
-5.0
1.4
--
V
Ω
S
Dynamic Characteristics
C
iss
C
oss
C
rss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
V
DS
= -25 V, V
GS
= 0 V,
f = 1.0 MHz
--
--
--
330
75
12
430
98
15
pF
pF
pF
Switching Characteristics
t
d(on)
t
r
t
d(off)
t
f
Q
g
Q
gs
Q
gd
Turn-On Delay Time
Turn-On Rise Time
Turn-Off Delay Time
Turn-Off Fall Time
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
V
DD
= -100 V, I
D
= -4.8 A,
R
G
= 25
Ω
(Note 4, 5)
--
--
--
--
--
--
--
9
70
12
25
10
2.8
5.2
28
150
35
60
13
--
--
ns
ns
ns
ns
nC
nC
nC
V
DS
= -160 V, I
D
= -4.8 A,
V
GS
= -10 V
(Note 4, 5)
Drain-Source Diode Characteristics and Maximum Ratings
I
S
I
SM
V
SD
t
rr
Q
rr
Maximum Continuous Drain-Source Diode Forward Current
Maximum Pulsed Drain-Source Diode Forward Current
V
GS
= 0 V, I
S
= -3.7 A
Drain-Source Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
V
GS
= 0 V, I
S
= -4.8 A,
dI
F
/ dt = 100 A/µs
(Note 4)
--
--
--
--
--
--
--
--
175
1.07
-3.7
-14.8
-5.0
--
--
A
A
V
ns
µC
Notes:
1. Repetitive Rating : Pulse width limited by maximum junction temperature
2. L = 36.2mH, I
AS
= -3.7A, V
DD
= -50V, R
G
= 25
Ω,
Starting T
J
= 25°C
3. I
SD
≤
-4.8A, di/dt
≤
300A/µs, V
DD
≤
BV
DSS,
Starting T
J
= 25°C
4. Pulse Test : Pulse width
≤
300µs, Duty cycle
≤
2%
5. Essentially independent of operating temperature
©2000 Fairchild Semiconductor International
Rev. A, May 2000
FQD5P20 / FQU5P20
• Improved dv/dt capability
10
1
10
0
-I
D
, Drain Current [A]
-I
D
, Drain Current [A]
V
GS
-15.0 V
-10.0 V
-8.0 V
-7.0 V
-6.5 V
-6.0 V
Bottom : -5.5 V
Top :
Typic
10
1
10
0
150℃
10
-1
25℃
-55℃
10
-1
※
Notes :
1. 250μ Pulse Test
s
2. T
C
= 25℃
※
Notes :
1. V
DS
= -40V
2. 250μ Pulse Test
s
10
-2
10
-1
10
0
10
1
2
4
6
8
10
-V
DS
, Drain-Source Voltage [V]
al
-V
GS
, Gate-Source Voltage [V]
Characteristics
Figure 1. On-Region Characteristics
Figure 2. Transfer Characteristics
3.0
10
1
R
DS(on)
[
Ω
],
Drain-Source On-Resistance
2.4
V
GS
= - 10V
V
GS
= - 20V
1.8
-I
DR
, Reverse Drain Current [A]
10
0
1.2
0.6
※
Note : T
J
= 25℃
150℃
25℃
※
Notes :
1. V
GS
= 0V
2. 250μ Pulse Test
s
0.0
0
3
6
9
12
10
-1
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-I
D
, Drain Current [A]
-V
SD
, Source-Drain Voltage [V]
Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage
Figure 4. Body Diode Forward Voltage
Variation vs. Source Current
and Temperature
750
C
iss
= C
gs
+ C
gd
(C
ds
= shorted)
C
oss
= C
ds
+ C
gd
C
rss
= C
gd
12
600
10
V
DS
= -40V
V
DS
= -100V
-V
GS
, Gate-Source Voltage [V]
8
V
DS
= -160V
Capacitance [pF]
450
C
iss
C
oss
6
300
※
Notes :
4
150
C
rss
1. V
GS
= 0 V
2. f = 1 MHz
2
※
Note : I
D
= -4.8 A
0
-1
10
0
10
0
10
1
0
2
4
6
8
10
12
-V
DS
, Drain-Source Voltage [V]
Q
G
, Total Gate Charge [nC]
Figure 5. Capacitance Characteristics
Figure 6. Gate Charge Characteristics
©2000 Fairchild Semiconductor International
Rev. A, May 2000
FQD5P20 / FQU5P20
Typical Characteristics
(Continued)
1.2
2.5
-BV
DSS
, (Normalized)
Drain-Source Breakdown Voltage
2.0
R
DS(ON)
, (Normalized)
Drain-Source On-Resistance
1.1
1.5
1.0
1.0
0.9
※
Notes :
1. V
GS
= 0 V
2. I
D
= -250
μ
A
0.5
※
Notes :
1. V
GS
= -10 V
2. I
D
= -2.4 A
0.8
-100
-50
0
50
100
o
150
200
0.0
-100
-50
0
50
100
o
150
200
T
J
, Junction Temperature [ C]
T
J
, Junction Temperature [ C]
Figure 7. Breakdown Voltage Variation
vs. Temperature
Figure 8. On-Resistance Variation
vs. Temperature
4
Operation in This Area
is Limited by R
DS(on)
1
10
100
µ
s
1 ms
10 ms
DC
3
-I
D
, Drain Current [A]
-I
D
, Drain Current [A]
2
10
0
※
Notes :
1. T
C
= 25 C
o
1
10
-1
2. T
J
= 150 C
3. Single Pulse
0
o
10
10
1
10
2
0
25
50
75
100
125
150
-V
DS
, Drain-Source Voltage [V]
T
C
, Case Temperature [℃]
Figure 9. Maximum Safe Operating Area
Figure 10. Maximum Drain Current
vs. Case Temperature
( t) , T h e r m a l R e s p o n s e
D = 0 .5
10
0
0 .2
0 .1
0 .0 5
10
-1
※
N o te s :
1 . Z
θ
J C
( t ) = 2 . 7 8
℃
/W M a x .
2 . D u ty F a c t o r , D = t
1
/t
2
3 . T
J M
- T
C
= P
D M
* Z
θ
J C
( t )
0 .0 2
0 .0 1
s in g le p u ls e
P
DM
t
1
t
2
Z
θ
JC
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
t
1
, S q u a r e W a v e P u ls e D u r a t io n [ s e c ]
Figure 11. Transient Thermal Response Curve
©2000 Fairchild Semiconductor International
Rev. A, May 2000