PD -93992A
AUTOMOTIVE MOSFET
Typical Applications
Electric Power Steering (EPS)
Anti-lock Braking System (ABS)
Wiper Control
Climate Control
Power Door
IRF1405S
IRF1405L
HEXFET
®
Power MOSFET
D
V
DSS
= 55V
R
DS(on)
= 5.3mΩ
Benefits
Description
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
G
S
I
D
= 131A
Absolute Maximum Ratings
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
V
GS
E
AS
I
AR
E
AR
dv/dt
T
J
T
STG
Stripe Planar design of HEXFET
®
Power MOSFETs
utilizes the lastest processing techniques to achieve
extremely low on-resistance per silicon area. Additional
features of this HEXFET power MOSFET are a 175°C
junction operating temperature, fast switching speed
and improved repetitive avalanche rating. These
benefits combine to make this design an extremely
efficient and reliable device for use in Automotive
applications and a wide variety of other applications.
Parameter
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
D
2
Pak
IRF1405S
TO-262
IRF1405L
Max.
131
93
680
200
1.3
± 20
590
See Fig.12a, 12b, 15, 16
5.0
-55 to + 175
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
Thermal Resistance
Parameter
R
θJC
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB mount)
Typ.
–––
–––
Max.
0.75
40
Units
°C/W
www.irf.com
1
12/07/04
IRF1405S/L
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)DSS
∆V
(BR)DSS
/∆T
J
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Internal Source Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
55
–––
–––
2.0
69
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.057
4.6
–––
–––
–––
–––
–––
–––
170
44
62
13
190
130
110
4.5
7.5
5480
1210
280
5210
900
1500
Max. Units
Conditions
–––
V
V
GS
= 0V, I
D
= 250µA
––– V/°C Reference to 25°C, I
D
= 1mA
5.3
mΩ V
GS
= 10V, I
D
= 101A
4.0
V
V
DS
= 10V, I
D
= 250µA
–––
S
V
DS
= 25V, I
D
= 110A
20
V
DS
= 55V, V
GS
= 0V
µA
250
V
DS
= 44V, V
GS
= 0V, T
J
= 150°C
200
V
GS
= 20V
nA
-200
V
GS
= -20V
260
I
D
= 101A
66
nC V
DS
= 44V
93
V
GS
= 10V
–––
V
DD
= 38V
–––
I
D
= 101A
ns
–––
R
G
= 1.1Ω
–––
V
GS
= 10V
D
Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
S
–––
V
GS
= 0V
–––
pF
V
DS
= 25V
–––
ƒ = 1.0MHz, See Fig. 5
–––
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 44V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 0V to 44V
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 131
showing the
A
G
integral reverse
––– ––– 680
S
p-n junction diode.
––– ––– 1.3
V
T
J
= 25°C, I
S
= 101A, V
GS
= 0V
––– 88 130
ns
T
J
= 25°C, I
F
= 101A
––– 250 380
nC di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
2
www.irf.com
IRF1405S/L
1000
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
1000
I
D
, Drain-to-Source Current (A)
100
10
I
D
, Drain-to-Source Current (A)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
100
4.5V
20µs PULSE WIDTH
T
J
= 25
°
C
1
10
100
4.5V
20µs PULSE WIDTH
T
J
= 175
°
C
1
10
100
1
0.1
10
0.1
V
DS
, Drain-to-Source Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
1000
T
J
= 175
°
C
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
T
J
= 25
°
C
3.0
I
D
= 169A
I
D
, Drain-to-Source Current (A)
2.5
100
2.0
1.5
10
1.0
0.5
1
V DS = 25V
20µs PULSE WIDTH
4
6
8
10
12
0.0
-60 -40 -20 0
V
GS
= 10V
20 40 60 80 100 120 140 160 180
V
GS
, Gate-to-Source Voltage (V)
T
J
, Junction Temperature(
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRF1405S/L
100000
20
V
GS
, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Ciss = C + Cgd, C
gs
ds SHORTED
Crss = C
gd
Coss = C + Cgd
ds
I
D
= 101A
16
V
DS
= 44V
V
DS
= 27V
C, Capacitance(pF)
10000
Ciss
12
Coss
1000
8
Crss
4
100
1
10
100
0
FOR TEST CIRCUIT
SEE FIGURE 13
0
60
120
180
240
300
VDS, Drain-to-Source Voltage (V)
Q
G
, Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
10000
I
SD
, Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
T
J
= 175
°
C
100
I
D
, Drain Current (A)
1000
10us
100us
1ms
10
10ms
100
T
J
= 25
°
C
10
1
0.0
V
GS
= 0 V
0.5
1.0
1.5
2.0
2.5
3.0
1
T
C
= 25 ° C
T
J
= 175 ° C
Single Pulse
1
10
100
V
SD
,Source-to-Drain Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRF1405S/L
160
LIMITED BY PACKAGE
V
DS
V
GS
R
D
I
D
, Drain Current (A)
120
R
G
10V
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
D.U.T.
+
-
V
DD
80
40
Fig 10a.
Switching Time Test Circuit
V
DS
90%
0
25
50
75
100
125
150
175
T
C
, Case Temperature ( °C)
Fig 9.
Maximum Drain Current Vs.
Case Temperature
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms
1
D = 0.50
Thermal Response (Z
thJC
)
0.20
0.1
0.10
0.05
0.02
0.01
0.01
SINGLE PULSE
(THERMAL RESPONSE)
P
DM
t
1
t
2
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.001
0.00001
0.0001
0.001
0.01
0.1
1
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5