PD - 94310
Advanced Process Technology
l
Dynamic dv/dt Rating
l
175°C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
l
Ease of Paralleling
l
Simple Drive Requirements
Description
l
Fifth Generation HEXFET
®
Power MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized device
design that HEXFET Power MOSFETs are well known for,
provides the designer with an extremely efficient and reliable
device for use in a wide variety of applications.
The TO-220 package is universally preferred for all commercial-
industrial applications at power dissipation levels to
approximately 50 watts. The low thermal resistance and low
package cost of the TO-220 contribute to its wide acceptance
throughout the industry.
The D
2
Pak is a surface mount power package capable of
accommodating die sizes up to HEX-4. It provides the highest
power capability and the lowest possible on-resistance in any
existing surface mount package. The D
2
Pak is suitable for high
current applications because of its low internal connection
resistance and can dissipate up to 2.0W in a typical surface
mount application.
The through-hole version (IRF634NL) is available for low-
profile application.
IRF634N
IRF634NS
IRF634NL
HEXFET
®
Power MOSFET
D
V
DSS
= 250V
R
DS(on)
= 0.435Ω
G
S
I
D
= 8.0A
TO-220AB
IRF634N
D
2
Pak
IRF634NS
TO-262
IRF634NL
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
P
D
@T
A
= 25°C
V
GS
E
AS
I
AR
E
AR
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
Max.
8.0
5.6
32
88
3.8
0.59
± 20
110
4.8
8.8
7.3
-55 to +175
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
www.irf.com
1
9/10/01
IRF634N/S/L
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)DSS
∆V
(BR)DSS
/∆T
J
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Internal Source Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min. Typ. Max. Units
Conditions
250 ––– –––
V
V
GS
= 0V, I
D
= 250µA
––– 0.33 ––– V/°C Reference to 25°C, I
D
= 1mA
––– ––– 0.435
Ω
V
GS
= 10V, I
D
= 4.8A
2.0
––– 4.0
V
V
DS
= V
GS
, I
D
= 250µA
5.4
––– –––
S
V
DS
= 50V, I
D
= 4.8A
––– ––– 25
V
DS
= 250V, V
GS
= 0V
µA
––– ––– 250
V
DS
= 200V, V
GS
= 0V, T
J
= 150°C
––– ––– 100
V
GS
= 20V
nA
––– ––– -100
V
GS
= -20V
––– ––– 34
I
D
= 4.8A
––– ––– 6.5
nC V
DS
= 200V
––– ––– 16
V
GS
= 10V, See Fig. 6 and 13
–––
8.4 –––
V
DD
= 125V
–––
16 –––
I
D
= 4.8A
ns
–––
28 –––
R
G
= 1.3Ω
–––
15 –––
V
GS
= 10V, See Fig. 10
D
Between lead,
4.5 –––
–––
6mm (0.25in.)
nH
G
from package
–––
–––
7.5
and center of die contact
S
––– 620 –––
V
GS
= 0V
–––
84 –––
V
DS
= 25V
–––
23 –––
pF
ƒ = 1.0MHz, See Fig. 5
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 8.0
showing the
A
G
integral reverse
––– –––
32
S
p-n junction diode.
––– ––– 1.3
V
T
J
= 25°C, I
S
= 4.8A, V
GS
= 0V
––– 130 200
ns
T
J
= 25°C, I
F
= 4.8A
––– 650 980
nC
di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Thermal Resistance
Parameter
R
θJC
R
θCS
R
θJA
R
θJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Junction-to-Ambient (PCB mount)
Typ.
–––
0.50
–––
–––
Max.
1.7
–––
62
40
Units
°C/W
2
www.irf.com
IRF634N/S/L
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
100
I
D
, Drain-to-Source Current (A)
10
I
D
, Drain-to-Source Current (A)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
10
1
4.5V
1
4.5V
0.1
0.01
0.1
20µs PULSE WIDTH
T
J
= 25
°
C
1
10
100
0.1
0.1
20µs PULSE WIDTH
T
J
= 175
°
C
1
10
100
V
DS
, Drain-to-Source Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
100
3.5
I
D
= 7.9A
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
I
D
, Drain-to-Source Current (A)
3.0
2.5
10
T
J
= 175
°
C
2.0
1.5
1
T
J
= 25
°
C
1.0
0.5
0.1
4.0
V DS = 50V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
9.0
0.0
-60 -40 -20
V
GS
= 10V
0
20 40 60 80 100 120 140 160 180
V
GS
, Gate-to-Source Voltage (V)
T
J
, Junction Temperature (
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRF634N/S/L
1200
20
VGS = 0V,
f = 1 MHZ
Ciss = C + Cgd, C
gs
ds SHORTED
Crss = C
gd
Coss = C + Cgd
ds
I
D
= 4.8A
V
DS
= 200V
V
DS
= 125V
V
DS
= 50V
1000
V
GS
, Gate-to-Source Voltage (V)
16
C, Capacitance(pF)
800
Ciss
12
600
Coss
400
8
Crss
200
4
0
1
10
100
1000
0
0
10
20
FOR TEST CIRCUIT
SEE FIGURE 13
30
40
VDS , Drain-to-Source Voltage (V)
Q
G
, Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
100
100
OPERATION IN THIS AREA
LIMITED BY R DS (on)
I
SD
, Reverse Drain Current (A)
ID , Drain-to-Source Current (A)
10
10
100µsec
T
J
= 175
°
C
1
1
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
1
10
100
T
J
= 25
°
C
10msec
1000
0.1
0.2
V
GS
= 0 V
0.4
0.6
0.8
1.0
1.2
0.1
V
SD
,Source-to-Drain Voltage (V)
VDS , Drain-toSource Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRF634N/S/L
10.0
V
DS
V
GS
R
D
8.0
D.U.T.
+
R
G
I
D
, Drain Current (A)
-
V
DD
6.0
10V
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
4.0
Fig 10a.
Switching Time Test Circuit
2.0
V
DS
90%
0.0
25
50
75
100
125
150
175
T
C
, Case Temperature ( ° C)
10%
V
GS
Fig 9.
Maximum Drain Current Vs.
Case Temperature
t
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms
10
Thermal Response (Z
thJC
)
1
D = 0.50
0.20
0.10
0.05
P
DM
SINGLE PULSE
(THERMAL RESPONSE)
t
1
t
2
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.0001
0.001
0.01
0.1
0.1
0.02
0.01
0.01
0.00001
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5