PD - 97395E
IRF6718L2TRPbF
IRF6718L2TR1PbF
RoHS Compliant Containing No Lead and Bromide
l
Dual Sided Cooling Compatible
l
Ultra Low Package Inductance
l
Very Low R
DS(ON)
for Reduced Conduction Losses
l
Optimized for Active O-Ring / Efuse Applications
l
Compatible with existing Surface Mount Techniques
l
Typical values (unless otherwise specified)
DirectFET
®
Power MOSFET
R
DS(on)
Q
gs2
9.4nC
V
DSS
Q
g
tot
V
GS
Q
gd
20nC
R
DS(on)
Q
oss
50nC
25V max ±20V max 0.50mΩ@10V 1.0mΩ@4.5V
Q
rr
67nC
V
gs(th)
1.9V
64nC
Applicable DirectFET Outline and Substrate Outline
S1
S2
SB
M2
M4
L6
DirectFET® ISOMETRIC
L4
L6
L8
Description
The IRF6718L2TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET
®
packaging to achieve
the lowest on-state resistance in a package that has the footprint of a D-pak. The DirectFET package is compatible with existing layout
geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when
application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling
to maximize thermal transfer in power systems.
The IRF6718L2TRPbF has extremely low Si Rdson coupled with ultra low package resistance to minimize conduction losses. The
IRF6718L2TRPbF has been optimized for parameters that are critical in reliable operation on Active O-Ring / Efuse / hot swap applications.
Absolute Maximum Ratings
Parameter
V
DS
V
GS
I
D
@ T
A
= 25°C
I
D
@ T
A
= 70°C
I
D
@ T
C
= 25°C
I
DM
E
AS
I
AR
4
Typical RDS(on) (mΩ)
Max.
Units
V
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
e
e
f
Ãg
h
25
±20
61
52
270
490
530
49
VGS, Gate-to-Source Voltage (V)
A
mJ
A
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
0
20
40
60
80
100 120 140 160 180
QG Total Gate Charge (nC)
ID= 49A
VDS= 20V
VDS= 13V
ID = 61A
3
2
T J = 125°C
1
T J = 25°C
0
2
4
6
8
10
VGS, Gate -to -Source Voltage (V)
Fig 1.
Typical On-Resistance vs. Gate Voltage
Notes:
Fig 2.
Typical Total Gate Charge vs Gate-to-Source Voltage
T
C
measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting T
J
= 25°C, L = 0.44mH, R
G
= 25Ω, I
AS
= 49A.
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
1
07/27/11
IRF6718L2TR/TR1PbF
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
DSS
ΔΒV
DSS
/ΔT
J
R
DS(on)
V
GS(th)
ΔV
GS(th)
/ΔT
J
I
DSS
I
GSS
gfs
Q
g
Q
gs1
Q
gs2
Q
gd
Q
godr
Q
sw
Q
oss
R
G
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Q
gs2
+ Q
gd
)
Output Charge
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
25
–––
–––
–––
1.35
–––
–––
–––
–––
–––
820
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ. Max. Units
–––
11
0.50
1.0
1.90
-7.6
–––
–––
–––
–––
–––
64
18
9.4
20
16.6
29.4
50
0.90
67
140
47
53
8910
2310
1115
–––
–––
Conditions
V V
GS
= 0V, I
D
= 250μA
mV/°C Reference to 25°C, I
D
= 1mA
0.70
mΩ V
GS
= 10V, I
D
= 61A
V
GS
= 4.5V, I
D
= 49A
1.4
2.35
V V
DS
= V
GS
, I
D
= 150μA
i
i
–––
1.0
150
100
-100
–––
96
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
mV/°C
μA
V
DS
= 20V, V
GS
= 0V
V
DS
= 20V, V
GS
= 0V, T
J
= 125°C
nA
S
V
GS
= 20V
V
GS
= -20V
V
DS
= 13V, I
D
= 49A
V
DS
= 13V
nC
V
GS
= 4.5V
I
D
= 49A
See Fig. 18
nC
Ω
V
DS
= 16V, V
GS
= 0V
V
DD
= 13V, V
GS
= 4.5V
ns
I
D
= 49A
R
G
= 6.8Ω
V
GS
= 0V
Ãi
pF
V
DS
= 13V
ƒ = 1.0MHz
Diode Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min.
–––
–––
–––
–––
–––
Typ. Max. Units
–––
–––
–––
39
67
61
A
490
1.0
59
100
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= 49A, V
GS
= 0V
T
J
= 25°C, I
F
= 49A
di/dt = 200A/μs
Ãg
i
i
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width
≤
400μs; duty cycle
≤
2%.
2
www.irf.com
IRF6718L2TR/TR1PbF
Absolute Maximum Ratings
P
D
@T
A
= 25°C
P
D
@T
A
= 70°C
P
D
@T
C
= 25°C
T
P
T
J
T
STG
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
e
e
f
Parameter
Max.
4.3
3.0
83
270
-55 to + 175
Units
W
°C
Thermal Resistance
R
θJA
R
θJA
R
θJA
R
θJC
R
θJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
j
k
fl
Parameter
Typ.
–––
12.5
20
–––
1.0
0.029
Max.
35
–––
–––
1.8
–––
Units
°C/W
eÃ
W/°C
100
10
1
0.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
D = 0.50
0.20
0.10
0.05
0.02
0.01
τ
J
τ
J
τ
1
Thermal Response ( Z thJA )
R
1
R
1
τ
2
R
2
R
2
R
3
R
3
τ
3
R
4
R
4
τ
A
τ
4
τ
A
Ri (°C/W)
12.2942
14.4246
2.07265
6.20859
18.10679
2.626824
0.007811
0.239314
τi
(sec)
τ
1
τ
2
τ
3
τ
4
Ci=
τi/Ri
Ci=
τi/Ri
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.01
0.1
1
10
100
1000
0.0001
1E-006
1E-005
0.0001
0.001
t1 , Rectangular Pulse Duration (sec)
Fig 3.
Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
(At lower pulse widths Zth
JA
& Zth
JC
are combined)
Notes:
Mounted on minimum footprint full size board with metalized
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink.
R
θ
is measured at
T
J
of approximately 90°C.
Used double sided cooling, mounting pad with large heatsink.
Surface mounted on 1 in. square Cu
board (still air).
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
www.irf.com
3
IRF6718L2TR/TR1PbF
1000
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
1000
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
BOTTOM
10
100
1
2.5V
0.1
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
≤
60μs PULSE WIDTH
Tj = 25°C
10
0.1
2.5V
≤
60μs PULSE WIDTH
Tj = 175°C
1
10
100
1000
V DS, Drain-to-Source Voltage (V)
Fig 4.
Typical Output Characteristics
1000
VDS = 15V
≤60μs
PULSE WIDTH
100
Fig 5.
Typical Output Characteristics
2.0
ID = 61A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
V GS = 10V
V GS = 4.5V
1.5
10
T J = 175°C
T J = 25°C
T J = -40°C
1.0
1
0.1
1
2
3
4
5
0.5
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 6.
Typical Transfer Characteristics
100000
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
Fig 7.
Normalized On-Resistance vs. Temperature
0.90
Top
Vgs = 6.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 12V
Vgs = 14V
Vgs = 16V
Vgs = 18V
T J = 25°C
10000
Ciss
Coss
Crss
Typical RDS(on) ( mΩ)
C oss = C ds + C gd
0.80
Bottom
C, Capacitance(pF)
0.70
1000
0.60
100
1
10
VDS, Drain-to-Source Voltage (V)
100
0.50
0
50
100
150
200
Fig 8.
Typical Capacitance vs.Drain-to-Source Voltage
Fig 9.
Typical On-Resistance vs.
Drain Current and Gate Voltage
ID, Drain Current (A)
4
www.irf.com
IRF6718L2TR/TR1PbF
1000
10000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100μsec
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
T J = 175°C
T J = 25°C
T J = -40°C
1000
1msec
100
DC
10
10msec
10
1
VGS = 0V
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
VSD, Source-to-Drain Voltage (V)
1
T C = 25°C
T J = 175°C
0.1
0
Single Pulse
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 10.
Typical Source-Drain Diode Forward Voltage
Typical VGS(th) Gate threshold Voltage (V)
300
250
ID, Drain Current (A)
Fig 11.
Maximum Safe Operating Area
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-75 -50 -25 0
25 50 75 100 125 150 175 200
T J , Temperature ( °C )
ID = 150μA
ID = 250μA
ID = 1.0mA
ID = 1.0A
200
150
100
50
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
Fig 12.
Maximum Drain Current vs. Case Temperature
400
Gfs, Forward Transconductance (S)
Fig 13.
Typical Threshold Voltage vs. Junction
Temperature
2400
EAS , Single Pulse Avalanche Energy (mJ)
2000
1600
1200
800
400
0
300
TJ = 25°C
200
T J = 175°C
100
V DS = 10V
380μs PULSE WIDTH
ID
TOP
2.9A
4.6A
BOTTOM 49A
2
0
0
20
40
60
80
100
25
50
75
100
125
150
175
ID,Drain-to-Source Current (A)
Starting T J , Junction Temperature (°C)
Fig 14.
Typ. Forward Transconductance vs. Drain Current
Fig 15.
Maximum Avalanche Energy vs. Drain Current
www.irf.com
5