PD- 91100D
IRF7201
HEXFET
®
Power MOSFET
Generation V Technology
l
Ultra Low On-Resistance
l
N-Channel MOSFET
l
Surface Mount
l
Available in Tape & Reel
l
Dynamic dv/dt Rating
l
Fast Switching
Description
l
S
S
S
G
1
8
A
A
D
D
D
D
2
7
V
DSS
= 30V
3
6
4
5
R
DS(on)
= 0.030Ω
Top View
Fifth Generation
power MOSFETs from
International Rectifier utilize advanced processing
techniques to achieve extremely low on-resistance
per silicon area. This benefit, combined with the fast
switching speed and ruggedized device design that
HEXFET MOSFETs are well known for, provides the
designer with an extremely efficient and reliable device
for use in a wide variety of applications.
The SO-8 has been modified through a customized
leadframe for enhanced thermal characteristics and
multiple-die capability making it ideal in a variety of
power applications. With these improvements, multiple
devices can be used in an application with dramatically
reduced board space. The package is designed for
vapor phase, infra red, or wave soldering techniques.
Power dissipation of greater than 0.8W is possible in
a typical PCB mount application.
HEXFET
®
SO-8
Absolute Maximum Ratings
Parameter
V
DS
I
D
@ T
C
= 25°C
I
D
@ T
C
= 70°C
I
DM
P
D
@T
C
= 25°C
P
D
@T
C
= 70°C
V
GS
V
GSM
E
AS
dv/dt
T
J,
T
STG
Drain- Source Voltage
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Gate-to-Source Voltage Single Pulse tp<10µs
Single Pulse Avalanche Energy
Peak Diode Recovery dv/dt
Junction and Storage Temperature Range
Max.
30
7.3
5.8
58
2.5
1.6
0.02
± 20
30
70
5.0
-55 to + 150
Units
V
A
W
W/°C
V
V
mJ
V/ns
°C
Thermal Resistance
Parameter
R
θJA
Maximum Junction-to-Ambient
Typ.
–––
Max.
50
Units
°C/W
www.irf.com
1
08/15/03
IRF7201
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)DSS
∆V
(BR)DSS
/∆T
J
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Min.
30
–––
–––
–––
1.0
5.8
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.024
–––
–––
–––
–––
–––
–––
–––
–––
19
2.3
6.3
7.0
35
21
19
550
260
100
Max. Units
Conditions
–––
V
V
GS
= 0V, I
D
= 250µA
––– V/°C Reference to 25°C, I
D
= 1mA
0.030
V
GS
= 10V, I
D
= 7.3A
Ω
0.050
V
GS
= 4.5V, I
D
= 3.7A
–––
V
V
DS
= V
GS
, I
D
= 250µA
–––
S
V
DS
= 15V, I
D
= 2.3A
1.0
V
DS
= 24V, V
GS
= 0V
µA
25
V
DS
= 24V, V
GS
= 0V, T
J
= 125°C
-100
V
GS
= -20V
nA
100
V
GS
= 20V
28
I
D
= 4.6A
3.5
nC V
DS
= 24V
9.5
V
GS
= 10V, See Fig. 10
–––
V
DD
= 15V
–––
I
D
= 4.6A
ns
–––
R
G
= 6.2Ω
–––
R
D
= 3.2Ω,
–––
V
GS
= 0V
–––
pF
V
DS
= 25V
–––
ƒ = 1.0MHz, See Fig. 9
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Min. Typ. Max. Units
–––
–––
–––
–––
48
73
2.5
A
58
1.2
73
110
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= 4.6A, V
GS
= 0V
T
J
= 25°C, I
F
= 4.6A
di/dt = 100A/µs
D
S
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
I
SD
≤
4.6A, di/dt
≤
120A/µs, V
DD
≤
V
(BR)DSS
,
T
J
≤
150°C
V
DD
= 15V, starting T
J
= 25°C, L = 6.6mH
R
G
= 25Ω, I
AS
= 4.6A. (See Figure 8)
Pulse width
≤
300µs; duty cycle
≤
2%.
When mounted on 1 inch square copper board, t<10 sec
2
www.irf.com
IRF7201
100
VGS
15V
10V
7.0V
5.5V
4.5V
4.0V
3.5V
BOTTOM 3.0V
TOP
100
I D , Drain-to-Source Current (A)
10
I D, Drain-to-Source Current (A)
VGS
15V
10V
7.0V
5.5V
4.5V
4.0V
3.5V
BOTTOM 3.0V
TOP
10
3.0V
3.0V
1
0.1
1
20µs PULSE WIDTH
T
J
= 25°C
A
10
1
0.1
1
20µs PULSE WIDTH
T
J
= 150°C
A
10
V DS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
100
100
I
D
, Drain-to-Source Current (A)
T
J
= 25°C
T
J
= 150°C
10
I
SD
, Reverse Drain Current (A)
10
T
J
= 150°C
T
J
= 25°C
1
1
3.0
3.5
4.0
V
DS
= 10V
20µs PULSE WIDTH
4.5
5.0
5.5
A
0.1
0.4
0.6
0.8
1.0
V
GS
= 0V
A
1.2
V
GS
, Gate-to-Source Voltage (V)
V
SD
, Source-to-Drain Voltage (V)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Typical Source-Drain Diode
Forward Voltage
www.irf.com
3
IRF7201
R
DS(on)
, Drain-to-Source On Resistance
(Ω)
2.0
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
I
D
= 4.6A
0.20
1.5
0.15
1.0
0.10
V
GS
= 4.5V
0.05
0.5
V
GS
= 10V
0.0
-60
-40
-20
0
20
40
60
80
V
GS
= 10V
100 120 140 160
A
0.00
0
10
20
30
40
A
T
J
, Junction Temperature (°C)
I
D
, Drain Current (A)
Fig 5.
Normalized On-Resistance
Vs. Temperature
Fig 6.
On-Resistance Vs. Drain Current
R
DS(on)
, Drain-to-Source On Resistance
(Ω)
E
AS
, Single Pulse Avalanche Energy (mJ)
0.05
200
TOP
160
BOTTOM
I
D
2.1A
3.7A
4.6A
0.04
120
80
0.03
I
D
= 7.3A
40
0.02
2
4
6
8
10
12
14
16
A
0
25
50
75
100
125
A
150
V
GS
, Gate-to-Source Voltage (V)
Starting T
J
, Junction Temperature (°C)
Fig 7.
On-Resistance Vs. Gate Voltage
Fig 8.
Maximum Avalanche Energy
Vs. Drain Current
4
www.irf.com
IRF7201
1000
800
C
iss
600
C
oss
400
V
GS
, Gate-to-Source Voltage (V)
V
GS
= 0V,
f = 1MHz
C
iss
= C
gs
+ C
gd
, C
ds
SHORTED
C
rss
= C
gd
C
oss
= C
ds
+ C
gd
20
I
D
= 4.6A
V
DS
= 24V
V
DS
= 15V
16
C, Capacitance (pF)
12
8
200
C
rss
4
0
1
10
100
A
0
0
5
10
15
20
25
30
A
V
DS
, Drain-to-Source Voltage (V)
Q
G
, Total Gate Charge (nC)
Fig 9.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 10.
Typical Gate Charge Vs.
Gate-to-Source Voltage
100
Thermal Response (Z
thJA
)
D = 0.50
0.20
0.10
0.05
0.02
0.01
P
DM
t
1
t
2
SINGLE PULSE
(THERMAL RESPONSE)
0.1
0.00001
0.0001
0.001
0.01
0.1
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJA
+ T
A
1
10
100
10
1
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5