PD - 95460
IRF7324PbF
HEXFET
®
Power MOSFET
Trench Technology
●
Ultra Low On-Resistance
●
Dual P-Channel MOSFET
●
Low Profile (<1.1mm)
●
Available in Tape & Reel
●
2.5V Rated
●
Lead-Free
●
S1
G1
S2
G2
1
2
3
4
8
7
D1
D1
D2
D2
V
DSS
= -20V
R
DS(on)
= 0.018Ω
6
5
Description
New trench HEXFET
®
Power MOSFETs from International
Rectifier utilize advanced processing techniques to
achieve extremely low on-resistance per silicon area.
This benefit, combined with the ruggedized device design
that HEXFET power MOSFETs are well known for,
provides the designer with an extremely efficient and
reliable device for use in battery and load management
applications.
Top View
SO-8
Absolute Maximum Ratings
Parameter
V
DS
I
D
@ T
A
= 25°C
I
D
@ T
A
= 70°C
I
DM
P
D
@T
A
= 25°C
P
D
@T
A
= 70°C
V
GS
T
J
, T
STG
Drain-Source Voltage
Continuous Drain Current, V
GS
@ -4.5V
Continuous Drain Current, V
GS
@ -4.5V
Pulsed Drain Current
Maximum Power Dissipation
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Junction and Storage Temperature Range
Max.
-20
-9.0
-7.1
-71
2.0
1.3
16
± 12
-55 to + 150
Units
V
A
W
W
mW/°C
V
°C
Thermal Resistance
R
θJA
Max.
Maximum Junction-to-Ambient
Parameter
Units
62.5
°C/W
www.irf.com
1
6/29/04
IRF7324PbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)DSS
∆V
(BR)DSS
/∆T
J
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Min.
-20
–––
–––
-0.45
19
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
-0.02
–––
–––
–––
–––
–––
–––
–––
–––
42
7.1
12
17
36
170
190
2940
630
420
Max. Units
Conditions
–––
V
V
GS
= 0V, I
D
= -250µA
––– V/°C Reference to 25°C, I
D
= -1mA
0.018
V
GS
= -4.5V, I
D
= -9.0A
Ω
0.026
V
GS
= -2.5V, I
D
= -7.7A
-1.0
V
V
DS
= V
GS
, I
D
= -250µA
–––
S
V
DS
= -10V, I
D
= -9.0A
-1.0
V
DS
= -16V, V
GS
= 0V
µA
-25
V
DS
= -16V, V
GS
= 0V, T
J
= 125°C
-100
V
GS
= -12V
nA
100
V
GS
= 12V
63
I
D
= -9.0A
11
nC
V
DS
= -16V
18
V
GS
= -5.0V
–––
V
DD
= -10V
–––
I
D
= -1.0A
ns
–––
R
G
= 6.0Ω
–––
R
D
= 10Ω
–––
V
GS
= 0V
–––
pF
V
DS
= -15V
–––
ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min. Typ. Max. Units
–––
–––
–––
–––
180
300
-2.0
A
-71
-1.2
270
450
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= -2.0A, V
GS
= 0V
T
J
= 25°C, I
F
= -2.0A
di/dt = -100A/µs
D
S
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
Pulse width
≤
300µs; duty cycle
≤
2%.
Surface mounted on FR-4 board,
t
≤
10sec.
2
www.irf.com
IRF7324PbF
1000
VGS
-4.5V
-3.5V
-2.5V
-2.0V
-1.5V
-1.3V
-1.0V
BOTTOM -0.75V
TOP
1000
-I
D
, Drain-to-Source Current (A)
100
10
-I
D
, Drain-to-Source Current (A)
100
VGS
-4.5V
-3.5V
-2.5V
-2.0V
-1.5V
-1.3V
-1.0V
BOTTOM -0.75V
TOP
10
1
1
-0.75V
0.1
0.1
-0.75V
0.01
0.1
20µs PULSE WIDTH
T
J
= 25
°
C
10
100
1
0.01
0.1
20µs PULSE WIDTH
T
J
= 150
°
C
1
10
100
-V
DS
, Drain-to-Source Voltage (V)
-V
DS
, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
100
2.0
I
D
= -9.0A
-I
D
, Drain-to-Source Current (A)
10
T
J
= 150
°
C
1.5
1.0
T
J
= 25
°
C
1
0.5
0.1
0.5
V DS = -15V
20µs PULSE WIDTH
1.0
1.5
2.0
2.5
3.0
3.5
0.0
-60 -40 -20
V
GS
= -4.5V
0
20
40
60
80 100 120 140 160
-V
GS
, Gate-to-Source Voltage (V)
T
J
, Junction Temperature (
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRF7324PbF
5000
4000
-V
GS
, Gate-to-Source Voltage (V)
V
GS
= 0V,
f = 1MHz
C
iss
= C
gs
+ C
gd ,
C
ds
SHORTED
C
rss
= C
gd
C
oss
= C
ds
+ C
gd
10
I
D
=
-9.0A
V
DS
=-16V
8
C, Capacitance (pF)
3000
Ciss
6
2000
4
1000
Coss
Crss
1
10
100
2
0
0
0
10
20
30
40
50
60
-V
DS
, Drain-to-Source Voltage (V)
Q
G
, Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
100
1000
-I
SD
, Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
10
-I
D
, Drain Current (A)
I
T
J
= 150
°
C
100
10us
T
J
= 25
°
C
1
100us
10
1ms
0.1
0.2
V
GS
= 0 V
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1
0.1
T
C
= 25 ° C
T
J
= 150 ° C
Single Pulse
1
10
10ms
100
-V
SD
,Source-to-Drain Voltage (V)
-V
DS
, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRF7324PbF
10.0
V
DS
8.0
R
D
V
GS
R
G
D.U.T.
+
-I
D
, Drain Current (A)
6.0
V
GS
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
4.0
Fig 10a.
Switching Time Test Circuit
2.0
t
d(on)
t
r
t
d(off)
t
f
V
GS
0.0
25
50
75
100
125
150
10%
T
C
, Case Temperature ( °C)
Fig 9.
Maximum Drain Current Vs.
Case Temperature
90%
V
DS
Fig 10b.
Switching Time Waveforms
100
Thermal Response (Z
thJA
)
D = 0.50
0.20
10
0.10
0.05
0.02
1
0.01
P
DM
t
1
t
2
SINGLE PULSE
(THERMAL RESPONSE)
0.1
0.00001
0.0001
0.001
0.01
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJA
+ T
A
0.1
1
10
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
-
V
DD
5