PD- 93893A
SMPS MOSFET
Applications
l
High frequency DC-DC converters
IRF7450
HEXFET
®
Power MOSFET
R
DS(on)
max
0.17
Ω
@V
GS
= 10V
I
D
2.5A
V
DSS
200V
Benefits
l
Low Gate to Drain Charge to Reduce
Switching Losses
l
Fully Characterized Capacitance Including
Effective C
OSS
to Simplify Design (See
App. Note AN1001)
l
Fully Characterized Avalanche Voltage
and Current
S
S
S
G
1
8
A
A
D
D
D
D
2
7
3
6
4
5
T o p V ie w
SO-8
Absolute Maximum Ratings
Parameter
I
D
@ T
A
= 25°C
I
D
@ T
A
= 70°C
I
DM
P
D
@T
A
= 25°C
V
GS
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
2.5
2.0
20
2.5
0.02
± 30
11
-55 to + 150
300 (1.6mm from case )
Units
A
W
W/°C
V
V/ns
°C
Thermal Resistance
Symbol
R
θJL
R
θJA
Parameter
Junction-to-Drain Lead
Junction-to-Ambient
Typ.
–––
–––
Max.
20
50
Units
°C/W
Notes
through
are on page 8
www.irf.com
1
2/22/01
IRF7450
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
V
(BR)DSS
Drain-to-Source Breakdown Voltage
∆V
(BR)DSS
/∆T
J
Breakdown Voltage Temp. Coefficient
R
DS(on)
Static Drain-to-Source On-Resistance
V
GS(th)
Gate Threshold Voltage
I
DSS
I
GSS
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
200
–––
–––
3.0
–––
–––
–––
–––
Typ.
–––
0.26
–––
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
V
GS
= 0V, I
D
= 250µA
––– V/°C Reference to 25°C, I
D
= 1mA
0.17
Ω
V
GS
= 10V, I
D
= 1.5A
5.5
V
V
DS
= V
GS
, I
D
= 250µA
25
V
DS
= 200V, V
GS
= 0V
µA
250
V
DS
= 160V, V
GS
= 0V, T
J
= 125°C
100
V
GS
= 30V
nA
-100
V
GS
= -30V
Dynamic @ T
J
= 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
2.6
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
26
6.0
12
10
3.0
17
18
940
160
33
1100
66
25
Max. Units
Conditions
–––
S
V
DS
= 50V, I
D
= 1.5A
39
I
D
= 1.5A
9.0
nC
V
DS
= 160V
18
V
GS
= 10V,
–––
V
DD
= 100V
–––
I
D
= 1.5A
ns
–––
R
G
= 6.0Ω
–––
V
GS
= 10V
–––
V
GS
= 0V
–––
V
DS
= 25V
–––
pF
ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 160V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 0V to 160V
Avalanche Characteristics
Parameter
E
AS
I
AR
Single Pulse Avalanche Energy
Avalanche Current
Typ.
–––
–––
Max.
230
2.5
Units
mJ
A
Diode Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Min. Typ. Max. Units
–––
–––
–––
–––
–––
–––
–––
–––
97
350
2.3
A
20
1.3
146
525
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= 1.5A, V
GS
= 0V
T
J
= 25°C, I
F
= 1.5A
di/dt = 100A/µs
D
S
2
www.irf.com
IRF7450
100
VGS
TOP
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
100
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
TOP
ID , Drain-to-Source Current (A)
10
ID , Drain-to-Source Current (A)
10
1
5.0V
1
0.1
5.0V
20µs PULSE WIDTH
Tj = 25°C
20µs PULSE WIDTH
Tj = 150°C
0.1
0.1
1
10
100
0.01
0.1
1
10
100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
100
2.5
I
D
= 2.5A
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
I
D
, Drain-to-Source Current (A)
T
J
= 150
°
C
10
2.0
1.5
T
J
= 25
°
C
1
1.0
0.5
0.1
5.0
V DS = 50V
20µs PULSE WIDTH
7.0
7.5
5.5
6.0
6.5
8.0
0.0
-60 -40 -20
V
GS
= 10V
0
20
40
60
80 100 120 140 160
V
GS
, Gate-to-Source Voltage (V)
T
J
, Junction Temperature (
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRF7450
10000
VGS = 0V,
f = 1 MHZ
Ciss = C + Cgd, C
gs
ds SHORTED
Crss = C
gd
Coss = C + C
ds
gd
20
I
D
=
1.5A
V
GS
, Gate-to-Source Voltage (V)
16
C, Capacitance(pF)
1000
Ciss
Coss
Crss
V
DS
= 160V
V
DS
= 100V
V
DS
= 40V
12
8
100
4
10
1
10
100
1000
0
0
10
20
30
40
VDS, Drain-to-Source Voltage (V)
Q
G
, Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
100
100
OPERATION IN THIS AREA
LIMITED BY R DS(on)
I
SD
, Reverse Drain Current (A)
ID, Drain-to-Source Current (A)
10
T
J
= 150
°
C
10
100µsec
1
T
J
= 25
°
C
1
T A = 25°C
T J = 150°C
0.1
Single Pulse
1
10
100
1msec
10msec
0.1
0.2
V
GS
= 0 V
0.4
0.6
0.8
1.0
1.2
V
SD
,Source-to-Drain Voltage (V)
1000
VDS , Drain-toSource Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRF7450
2.5
V
DS
2.0
R
D
V
GS
R
G
I
D
, Drain Current (A)
D.U.T.
+
1.5
-
V
DD
10V
1.0
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
Fig 10a.
Switching Time Test Circuit
0.5
V
DS
90%
0.0
25
50
75
100
125
150
T
C
, Case Temperature ( °C)
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 9.
Maximum Drain Current Vs.
Ambient Temperature
Fig 10b.
Switching Time Waveforms
100
Thermal Response (Z
thJA
)
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
0.1
SINGLE PULSE
(THERMAL RESPONSE)
0.01
0.00001
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJA
+ T
A
1
10
0.01
0.1
P
DM
t
1
t
2
100
0.0001
0.001
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5