PD - 95289
IRF7493PbF
HEXFET
®
Power MOSFET
Applications
l
High frequency DC-DC converters
l
Lead-Free
Benefits
l
Low Gate-to-Drain Charge to Reduce
Switching Losses
l
Fully Characterized Capacitance Including
Effective C
OSS
to Simplify Design, (See
App. Note AN1001)
l
Fully Characterized Avalanche Voltage
and Current
V
DSS
80V
R
DS(on)
max
15m @V
GS
=10V
:
Qg (typ.)
35nC
S
S
S
G
1
8
7
A
A
D
D
D
D
2
3
6
4
5
Top View
SO-8
Absolute Maximum Ratings
Parameter
V
DS
V
GS
I
D
@ T
C
= 25°C
I
D
@ T
C
= 70°C
I
DM
P
D
@T
C
= 25°C
P
D
@T
C
= 70°C
T
J
T
STG
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Max.
80
± 20
9.3
7.4
74
2.5
1.6
0.02
-55 to + 150
Units
V
f
Maximum Power Dissipation
f
Maximum Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
c
A
W
W/°C
°C
Thermal Resistance
Parameter
R
θJC
R
θJA
Junction-to-Lead
Junction-to-Ambient
Typ.
–––
–––
Max.
20
50
Units
f
Notes
through
are on page 9
www.irf.com
1
09/21/04
IRF7493PbF
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
DSS
∆ΒV
DSS
/∆T
J
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min. Typ. Max. Units
80
–––
–––
2.0
–––
–––
–––
–––
–––
0.074
11.5
–––
–––
–––
–––
–––
–––
–––
15
4.0
20
250
200
-200
nA
V
Conditions
V
GS
= 0V, I
D
= 250µA
mV/°C Reference to 25°C, I
D
= 1mA
mΩ V
GS
= 10V, I
D
= 5.6A
e
V
µA
V
DS
= V
GS
, I
D
= 250µA
V
DS
= 80V, V
GS
= 0V
V
DS
= 64V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
Dynamic @ T
J
= 25°C (unless otherwise specified)
gfs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
rss
eff.
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
13
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
35
5.7
12
8.3
7.5
30
12
1510
320
130
1130
210
320
–––
53
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
pF
ns
S
V
DS
= 15V, I
D
= 5.6A
I
D
= 5.6A
V
DS
= 40V
V
GS
= 10V
V
DD
= 40V,
I
D
= 5.6A
R
G
= 6.2Ω
V
GS
= 10V
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 64V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 0V to 64V
e
g
Avalanche Characteristics
E
AS
I
AR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
Ã
d
Typ.
–––
–––
Max.
180
5.6
Units
mJ
A
Diode Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min. Typ. Max. Units
–––
–––
–––
–––
–––
–––
–––
–––
37
52
9.3
A
74
1.3
56
78
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= 5.6A, V
GS
= 0V
T
J
= 25°C, I
F
= 5.6A, V
DD
= 15V
di/dt = 100A/µs
Ã
e
e
2
www.irf.com
IRF7493PbF
100
TOP
V
GS
ID, Drain-to-Source Current (A)
15V
10V
8.0V
5.5V
5.0V
4.5V
4.0V
BOTTOM 3.5V
100
ID, Drain-to-Source Current (A)
10
10
V
GS
15V
10V
8.0V
5.5V
5.0V
4.5V
4.0V
BOTTOM 3.5V
TOP
1
3.5V
3.5V
0.1
1
0.01
0.1
1
20µs PULSE WIDTH
Tj = 25°C
0.1
20µs PULSE WIDTH
Tj = 150°C
0.1
1
10
100
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
100.00
2.0
T J = 150°C
10.00
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current
(Α)
ID = 9.3A
VGS = 10V
1.5
T J = 25°C
1.00
1.0
0.10
3.0
4.0
VDS = 25V
20µs PULSE WIDTH
5.0
6.0
0.5
-60 -40 -20
0
20
40
60
80 100 120 140 160
VGS, Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRF7493PbF
100000
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds
C rss = C gd
10000
C oss = C ds + C gd
20
VGS, Gate-to-Source Voltage (V)
SHORTED
ID= 5.6A
16
VDS= 64V
VDS= 40V
VDS= 16V
C, Capacitance (pF)
12
Ciss
1000
Coss
Crss
100
8
4
10
1
10
100
0
0
10
20
30
40
50
60
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
100.0
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
T J = 150°C
10.0
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
10
100µsec
1.0
T J = 25°C
VGS = 0V
0.1
0.2
0.4
0.6
0.8
1.0
1.2
VSD, Source-toDrain Voltage (V)
1
Tc = 25°C
Tj = 150°C
Single Pulse
0
1
10
1msec
10msec
0.1
100
1000
VDS , Drain-toSource Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRF7493PbF
10
V
DS
8
ID , Drain Current (A)
R
D
V
GS
R
G
D.U.T.
+
6
-
V
DD
10V
4
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
2
Fig 10a.
Switching Time Test Circuit
V
DS
0
25
50
75
100
125
150
T C , Case Temperature (°C)
90%
Fig 9.
Maximum Drain Current Vs.
Ambient Temperature
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms
100
D = 0.50
Thermal Response ( Z thJC )
10
0.20
0.10
0.05
1
0.02
0.01
0.1
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5