PD - 9.1387B
PRELIMINARY
Advanced Process Technology
l
Isolated Package
l
High Voltage Isolation = 2.5KVRMS
l
Sink to Lead Creepage Dist. = 4.8mm
l
Fully Avalanche Rated
Description
l
IRFI3710
HEXFET
®
Power MOSFET
D
V
DSS
= 100V
G
S
R
DS(on)
= 0.025Ω
I
D
= 32A
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
The TO-220 Fullpak eliminates the need for additional
insulating hardware in commercial-industrial
applications. The moulding compound used provides
a high isolation capability and a low thermal resistance
between the tab and external heatsink. This isolation
is equivalent to using a 100 micron mica barrier with
standard TO-220 product. The Fullpak is mounted to
a heatsink using a single clip or by a single screw
fixing.
TO-220 FULLPAK
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
V
GS
E
AS
I
AR
E
AR
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw
Max.
32
23
180
63
0.42
± 20
530
28
6.3
5.0
-55 to + 175
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
Thermal Resistance
Parameter
R
θJC
R
θJA
Junction-to-Case
Junction-to-Ambient
Typ.
–––
–––
Max.
2.4
65
Units
°C/W
3/16/98
IRFI3710
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)DSS
∆V
(BR)DSS
/∆T
J
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Internal Source Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Drain to Sink Capacitance
Min.
100
–––
–––
2.0
20
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.12
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
14
59
58
48
4.5
7.5
3000
640
330
12
Max. Units
Conditions
–––
V
V
GS
= 0V, I
D
= 250µA
––– V/°C Reference to 25°C, I
D
= 1mA
0.025
Ω
V
GS
= 10V, I
D
= 16A
4.0
V
V
DS
= V
GS
, I
D
= 250µA
–––
S
V
DS
= 25V, I
D
= 28A
25
V
DS
= 100V, V
GS
= 0V
µA
250
V
DS
= 80V, V
GS
= 0V, T
J
= 150°C
100
V
GS
= 20V
nA
-100
V
GS
= -20V
190
I
D
= 28A
26
nC V
DS
= 80V
82
V
GS
= 10V, See Fig. 6 and 13
–––
V
DD
= 50V
–––
I
D
= 28A
ns
–––
R
G
= 2.5Ω
–––
R
D
= 1.7Ω, See Fig. 10
Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
–––
V
GS
= 0V
–––
V
DS
= 25V
pF
–––
ƒ = 1.0MHz, See Fig. 5
–––
ƒ = 1.0MHz
D
S
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Notes:
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
32
––– –––
showing the
A
G
integral reverse
––– ––– 180
p-n junction diode.
S
––– ––– 1.3
V
T
J
= 25°C, I
S
= 16A, V
GS
= 0V
––– 210 320
ns
T
J
= 25°C, I
F
= 28A
––– 1.7 2.6
µC di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Pulse width
≤
300µs; duty cycle
≤
2%.
t=60s, ƒ=60Hz
Uses IRF3710 data and test conditions
V
DD
= 25V, starting T
J
= 25°C, L = 1.4mH
R
G
= 25Ω, I
AS
= 28A. (See Figure 11)
I
SD
≤28A,
di/dt
≤
460A/µs, V
DD
≤
V
(BR)DSS
,
T
J
≤
175°C
IRFI3710
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
1000
I , D rain-to-S ource C urrent (A )
D
100
I , D rain-to-S ource C urrent (A )
D
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
100
4.5V
10
10
4.5V
1
0.1
1
20µ s P U LS E W ID TH
T
C
= 25°C
10
100
A
1
0.1
20µ s P U LS E W ID TH
T
C
= 175°C
1
10
A
100
V D S , D rain-to-S ource V oltage (V )
V D S , D rain-to-S ource V oltage (V )
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
1000
3.0
R
D S (on )
, D rain-to-S ource O n R esistance
(N orm alized)
I
D
= 46A
I
D
, D ra in -to-S o urc e C urren t (A )
2.5
T
J
= 2 5 °C
100
2.0
T
J
= 1 7 5 °C
1.5
10
1.0
0.5
1
4
5
6
7
V
DS
= 50V
2 0 µ s P U L S E W ID T H
8
9
10
A
0.0
-60 -40 -20
0
20
40
60
80
V
G S
= 10V
100 120 140 160 180
A
V
G S
, G a te -to -S o u rc e V o lta g e (V )
T
J
, Junction T em perature (°C )
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
IRFI3710
6000
5000
V
G S
, G ate-to-S ource V oltage (V )
V
GS
C
iss
C
rss
C
oss
=
=
=
=
0V ,
f = 1M H z
C
gs
+ C
gd
, C
ds
S H O R TE D
C
gd
C
ds
+ C
gd
20
I
D
= 28 A
V
D S
= 80V
V
D S
= 50V
V
D S
= 20V
16
C , C apacitanc e (pF )
C
is s
4000
12
3000
C
oss
2000
8
C
rs s
1000
4
0
1
10
100
A
0
0
40
80
FO R TE S T C IR C U IT
S E E FIG U R E 13
120
160
200
A
V
D S
, D rain-to-S ource V oltage (V )
Q
G
, Total G ate C harge (nC )
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
1000
I
S D
, R everse D rain C urrent (A )
O P E R A TIO N IN TH IS A R E A LIM ITE D
B Y R
D S (on)
I
D
, D rain C urrent (A )
100
10µ s
100
T
J
= 17 5°C
T
J
= 25°C
10
100µ s
10
1m s
10m s
1
0.4
0.8
1.2
1.6
V
G S
= 0V
A
1
1
T
C
= 25°C
T
J
= 175°C
S ingle P ulse
10
100
2.0
A
1000
V
S D
, S ource-to-D rain V oltage (V )
V
D S
, D rain-to-S ource V oltage (V )
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
IRFI3710
35
V
DS
30
R
D
V
GS
R
G
D.U.T.
+
I
D
, Drain Current (A)
25
-
V
DD
20
10V
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
15
10
Fig 10a.
Switching Time Test Circuit
V
DS
90%
5
0
25
50
75
100
125
150
175
T
C
, Case Temperature ( ° C)
Fig 9.
Maximum Drain Current Vs.
Case Temperature
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms
10
Thermal Response (Z
thJC
)
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
P
DM
t
1
t
2
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.0001
0.001
0.01
0.1
1
10
0.01
0.001
0.00001
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case