PD- 95063A
SMPS MOSFET
Applications
l
High frequency DC-DC converters
l
Lead-Free
IRFR220NPbF
IRFU220NPbF
HEXFET
®
Power MOSFET
V
DSS
R
DS(on)
max (mΩ)
200V
600
I
D
5.0A
Benefits
l
Low Gate to Drain Charge to Reduce
Switching Losses
l
Fully Characterized Capacitance Including
Effective C
OSS
to Simplify Design, (See
App. Note AN1001)
l
Fully Characterized Avalanche Voltage
and Current
D-Pak
IRFR22ON
I-Pak
IRFU220N
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
V
GS
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
5.0
3.5
20
43
0.71
± 20
7.5
-55 to + 175
300 (1.6mm from case )
Units
A
W
W/°C
V
V/ns
°C
Typical SMPS Topologies
l
Telecom 48V input Forward Converters
Notes
through
are on page 10
www.irf.com
1
12/10/04
IRFR/U220NPbF
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
V
(BR)DSS
Drain-to-Source Breakdown Voltage
∆V
(BR)DSS
/∆T
J
Breakdown Voltage Temp. Coefficient
R
DS(on)
Static Drain-to-Source On-Resistance
V
GS(th)
Gate Threshold Voltage
I
DSS
I
GSS
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min. Typ. Max. Units
Conditions
200 ––– –––
V
V
GS
= 0V, I
D
= 250µA
––– 0.23 ––– V/°C Reference to 25°C, I
D
= 1mA
––– ––– 600
mΩ V
GS
= 10V, I
D
= 2.9A
2.0
––– 4.0
V
V
DS
= V
GS
, I
D
= 250µA
––– ––– 25
V
DS
= 200V, V
GS
= 0V
µA
––– ––– 250
V
DS
= 160V, V
GS
= 0V, T
J
= 150°C
––– ––– 100
V
GS
= 20V
nA
––– ––– -100
V
GS
= -20V
Dynamic @ T
J
= 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
2.6
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
15
2.4
6.1
6.4
11
20
12
300
53
15
300
23
46
Max. Units
Conditions
–––
S
V
DS
= 50V, I
D
= 2.9A
23
I
D
= 2.9A
3.6
nC
V
DS
= 160V
9.2
V
GS
= 10V,
–––
V
DD
= 100V
–––
I
D
= 2.9A
ns
–––
R
G
= 24Ω
–––
V
GS
= 10V
–––
V
GS
= 0V
–––
V
DS
= 25V
–––
pF
ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 160V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 0V to 160V
Avalanche Characteristics
Parameter
E
AS
I
AR
E
AR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Typ.
–––
–––
–––
Max.
46
2.9
4.3
Units
mJ
A
mJ
Thermal Resistance
Parameter
R
θJC
R
θJA
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB mount)*
Junction-to-Ambient
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Typ.
–––
–––
–––
Min. Typ. Max. Units
Max.
3.5
50
110
Units
°C/W
Diode Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Conditions
D
MOSFET symbol
5.0
––– –––
showing the
A
G
integral reverse
20
––– –––
S
p-n junction diode.
––– ––– 1.3
V
T
J
= 25°C, I
S
= 2.9A, V
GS
= 0V
––– 90 140
ns
T
J
= 25°C, I
F
= 2.9A
––– 320 480
nC
di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
2
www.irf.com
IRFR/U220NPbF
100
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
I
D
, Drain-to-Source Current (A)
10
I
D
, Drain-to-Source Current (A)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
10
1
1
4.5V
0.1
4.5V
0.01
0.1
20µs PULSE WIDTH
T
J
= 25
°
C
1
10
100
0.1
0.1
20µs PULSE WIDTH
T
J
= 175
°
C
1
10
100
V
DS
, Drain-to-Source Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
100
3.5
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
I
D
= 4.8A
I
D
, Drain-to-Source Current (A)
T
J
= 25
°
C
10
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20 0
T
J
= 175
°
C
1
0.1
4.0
V DS = 50V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
9.0
10.0
V
GS
= 10V
20 40 60 80 100 120 140 160 180
V
GS
, Gate-to-Source Voltage (V)
T
J
, Junction Temperature (
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRFR/U220NPbF
10000
20
V
GS
, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Ciss = C + Cgd, C
gs
ds SHORTED
Crss = C
gd
Coss = C + Cgd
ds
I
D
= 2.9A
V
DS
= 160V
V
DS
= 100V
V
DS
= 40V
16
1000
C, Capacitance(pF)
Ciss
100
12
Coss
10
8
Crss
4
1
1
10
100
1000
0
0
5
10
FOR TEST CIRCUIT
SEE FIGURE 13
15
20
25
Q
G
, Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
100
100
I
SD
, Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
I
D
, Drain Current (A)
10us
10
10
T
J
= 175
°
C
100us
1
1ms
1
T
J
= 25
°
C
0.1
0.4
V
GS
= 0 V
0.6
0.8
1.0
1.2
0.1
1
T
C
= 25 ° C
T
J
= 175 ° C
Single Pulse
10
100
10ms
1000
V
SD
,Source-to-Drain Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRFR/U220NPbF
5.0
V
DS
V
GS
R
D
4.0
I
D
, Drain Current (A)
R
G
V
GS
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
D.U.T.
+
-
V
DD
3.0
2.0
Fig 10a.
Switching Time Test Circuit
1.0
V
DS
90%
0.0
25
50
75
100
125
150
175
T
C
, Case Temperature ( ° C)
10%
V
GS
Fig 9.
Maximum Drain Current Vs.
Case Temperature
t
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms
10
Thermal Response (Z
thJC
)
D = 0.50
1
0.20
0.10
0.05
P
DM
0.1
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.0001
0.001
0.01
0.1
t
1
t
2
0.01
0.000001
0.00001
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5