PD - 94740A
AUTOMOTIVE MOSFET
IRFR3710Z
IRFU3710Z
HEXFET
®
Power MOSFET
D
Features
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
V
DSS
= 100V
R
DS(on)
= 18mΩ
G
S
I
D
= 42A
Description
Specifically designed for Automotive applications, this HEXFET
®
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features of this design are a 175°C junction operating tempera-
ture, fast switching speed and improved repetitive avalanche
rating . These features combine to make this design an extremely
efficient and reliable device for use in Automotive applications and
a wide variety of other applications.
D-Pak
IRFR3710Z
I-Pak
IRFU3710Z
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
I
D
@ T
C
= 100°C Continuous Drain Current, V
GS
@ 10V
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
(Package Limited)
Pulsed Drain Current
I
DM
Max.
56
39
42
220
140
Units
A
P
D
@T
C
= 25°C Power Dissipation
V
GS
E
AS (Thermally limited)
E
AS
(Tested )
I
AR
E
AR
T
J
T
STG
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
W
W/°C
V
mJ
A
mJ
Single Pulse Avalanche Energy Tested Value
h
Avalanche Current
Ã
Repetitive Avalanche Energy
g
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
d
0.95
± 20
150
200
See Fig.12a, 12b, 15, 16
-55 to + 175
°C
300 (1.6mm from case )
10 lbf in (1.1N m)
Thermal Resistance
Parameter
R
θJC
R
θJA
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB mount)
Junction-to-Ambient
y
y
Typ.
Max.
1.05
40
110
Units
°C/W
i
–––
–––
–––
HEXFET
®
is a registered trademark of International Rectifier.
www.irf.com
1
11/13/06
IRFR/U3710Z
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
V
(BR)DSS
∆V
(BR)DSS
/∆T
J
R
DS(on)
V
GS(th)
gfs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Internal Source Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min. Typ. Max. Units
100
–––
–––
2.0
39
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
0.088
15
–––
–––
–––
–––
–––
–––
69
15
25
14
43
53
42
4.5
7.5
2930
290
180
1200
180
430
–––
–––
18
4.0
–––
20
250
200
-200
100
–––
–––
–––
–––
–––
–––
–––
nH
–––
–––
–––
–––
–––
–––
–––
pF
ns
nC
nA
V
Conditions
V
GS
= 0V, I
D
= 250µA
V/°C Reference to 25°C, I
D
= 1mA
mΩ V
GS
= 10V, I
D
= 33A
V
S
µA
V
DS
= V
GS
, I
D
= 250µA
V
DS
= 25V, I
D
= 33A
V
DS
= 100V, V
GS
= 0V
V
DS
= 100V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
I
D
= 33A
V
DS
= 80V
V
GS
= 10V
V
DD
= 50V
I
D
= 33A
R
G
= 6.8
Ω
V
GS
= 10V
e
e
e
Between lead,
6mm (0.25in.)
from package
and center of die contact
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0MHz
G
D
S
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 80V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 0V to 80V
f
Source-Drain Ratings and Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
–––
–––
–––
–––
–––
–––
–––
–––
35
41
56
A
220
1.3
53
62
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
G
S
D
Ã
p-n junction diode.
T
J
= 25°C, I
S
= 33A, V
GS
= 0V
T
J
= 25°C, I
F
= 33A, V
DD
= 50V
di/dt = 100A/µs
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRFR/U3710Z
1000
TOP
VGS
15V
10V
6.0V
5.0V
4.8V
4.5V
4.3V
4.0V
1000
TOP
VGS
15V
10V
6.0V
5.0V
4.8V
4.5V
4.3V
4.0V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
4.0V
10
10
4.0V
60µs PULSE WIDTH
Tj = 25°C
0.1
1
10
100
1
60µs PULSE WIDTH
Tj = 175°C
0.1
1
10
100
1
0.1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
1000
100
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current
(Α)
T J = 175°C
100
80
T J = 25°C
60
T J = 175°C
40
10
TJ = 25°C
VDS = 25V
60µs PULSE WIDTH
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
VGS, Gate-to-Source Voltage (V)
20
V DS = 10V
0
0
10
20
30
40
50
60
70
80
ID,Drain-to-Source Current (A)
1.0
Fig 3.
Typical Transfer Characteristics
Fig 4.
Typical Forward Transconductance
vs. Drain Current
www.irf.com
3
IRFR/U3710Z
100000
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
12.0
ID= 33A
VGS, Gate-to-Source Voltage (V)
10.0
8.0
6.0
4.0
2.0
0.0
10000
C, Capacitance(pF)
VDS= 80V
VDS= 50V
VDS= 20V
Ciss
1000
Coss
Crss
100
10
1
10
100
0
10
20
30
40
50
60
70
80
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5.
Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge vs.
Gate-to-Source Voltage
1000.00
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100.00
T J = 175°C
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
10.00
10
100µsec
1.00
T J = 25°C
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
10
1msec
10msec
0.10
0.2
0.4
0.6
0.8
1.0
1.2
VGS = 0V
1.4
1.6
1.8
100
1000
VSD, Source-to-Drain Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRFR/U3710Z
60
50
ID, Drain Current (A)
3.0
Limited By Package
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 56A
VGS = 10V
2.5
40
30
20
10
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
2.0
1.5
1.0
0.5
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 9.
Maximum Drain Current vs.
Case Temperature
Fig 10.
Normalized On-Resistance
vs. Temperature
10
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
0.1
τ
J
R
1
R
1
τ
J
τ
1
τ
2
R
2
R
2
R
3
R
3
τ
3
τ
C
τ
τ
3
0.01
τ
1
τ
2
Ri (°C/W)
τi
(sec)
0.576
0.000540
0.249
0.001424
0.224
0.007998
0.001
SINGLE PULSE
( THERMAL RESPONSE )
Ci=
τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
0.0001
1E-006
1E-005
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5