PD - 95573
IRFZ48VSPbF
Advanced Process Technology
l
Ultra Low On-Resistance
l
Dynamic dv/dt Rating
l
175°C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
l
Optimized for SMPS Applications
l
Lead-Free
Description
l
HEXFET
®
Power MOSFET
D
V
DSS
= 60V
R
DS(on)
= 12mΩ
G
S
I
D
= 72A
Advanced HEXFET
®
Power MOSFETs from International Rectifier
utilize advanced processing techniques to achieve extremely low
on-resistance per silicon area. This benefit, combined with the fast
switching speed and ruggedized device design that HEXFET power
MOSFETs are well known for, provides the designer with an extremely
efficient and reliable device for use in a wide variety of applications.
The D
2
Pak is a surface mount power package capable of
accommodating die sizes up to HEX-4. It provides the highest power
capability and the lowest possible on-resistance in any existing
surface mount package. The D
2
Pak is suitable for high current
applications because of its low internal connection resistance and
can dissipate up to 2.0W in a typical surface mount application.
D
2
Pak
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
V
GS
E
AS
I
AR
E
AR
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
Max.
72
51
290
150
1.0
± 20
166
72
15
5.3
-55 to + 175
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
Thermal Resistance
Parameter
R
θJC
R
θCS
R
θJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Typ.
–––
0.50
–––
Max.
1.0
–––
62
Units
°C/W
www.irf.com
1
07/19/04
IRFZ48VSPbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)DSS
∆V
(BR)DSS
/∆T
J
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Internal Source Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
60
–––
–––
2.0
35
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.064
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
7.6
200
157
166
4.5
7.5
1985
496
91
Max. Units
Conditions
–––
V
V
GS
= 0V, I
D
= 250µA
––– V/°C Reference to 25°C, I
D
= 1mA
12.0 mΩ V
GS
= 10V, I
D
= 43A
4.0
V
V
DS
= V
GS
, I
D
= 250µA
–––
S
V
DS
= 25V, I
D
= 43A
25
V
DS
= 60V, V
GS
= 0V
µA
250
V
DS
= 48V, V
GS
= 0V, T
J
= 150°C
100
V
GS
= 20V
nA
-100
V
GS
= -20V
110
I
D
= 72A
29
nC
V
DS
= 48V
36
V
GS
= 10V, See Fig. 6 and 13
–––
V
DD
= 30V
–––
I
D
= 72A
ns
–––
R
G
= 9.1Ω
–––
R
D
= 0.34Ω, See Fig. 10
Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
–––
V
GS
= 0V
–––
V
DS
= 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
D
S
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Notes:
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
72
––– –––
showing the
A
G
integral reverse
––– ––– 290
S
p-n junction diode.
––– ––– 2.0
V
T
J
= 25°C, I
S
= 72A, V
GS
= 0V
––– 70 100
ns
T
J
= 25°C, I
F
= 72A
––– 155 233
nC di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
≤
72A, di/dt
≤
151A/µs, V
DD
≤
V
(BR)DSS
,
T
J
≤
175°C
Pulse width
≤
300µs; duty cycle
≤
2%.
Starting T
J
= 25°C, L = 64µH
R
G
= 25Ω, I
AS
= 72A. (See Figure 12)
2
www.irf.com
IRFZ48VSPbF
1000
100
I
D
, Drain-to-Source Current (A)
I
D
, Drain-to-Source Current (A)
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
100
4.5V
10
10
4.5V
1
0.1
20µs PULSE WIDTH
T
J
= 25
°
C
1
10
100
1
0.1
20µs PULSE WIDTH
T
J
= 175
°
C
1
10
100
V
DS
, Drain-to-Source Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
1000
3.0
I
D
= 72A
I
D
, Drain-to-Source Current (A)
T
J
= 25
°
C
T
J
= 175
°
C
2.5
100
2.0
1.5
10
1.0
0.5
1
4
6
8
V DS= 25V
20µs PULSE WIDTH
10
12
14
0.0
-60 -40 -20 0
V
GS
= 10V
20 40 60 80 100 120 140 160 180
V
GS
, Gate-to-Source Voltage (V)
T
J
, Junction Temperature (
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRFZ48VSPbF
4000
20
C, Capacitance(pF)
3000
Crss = Cgd
Coss = Cds + Cgd
V
GS
, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Cis = Cgs + Cgd, Cds SHORTED
I
D
=
72A
V
DS
= 48V
V
DS
= 30V
V
DS
= 12V
15
Ciss
2000
10
1000
5
Coss
Crss
0
1
10
100
0
0
20
40
60
80
100
120
VDS, Drain-to-Source Voltage (V)
Q
G
, Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
1000
1000
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
I
SD
, Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
100
I
D
, Drain Current (A)
T
J
= 175
°
C
10us
100
100us
10
T
J
= 25
°
C
10
1ms
10ms
1
0.1
0.2
V
GS
= 0 V
0.6
1.0
1.4
1.8
1
T
C
= 25 °C
T
J
= 175 °C
Single Pulse
1
10
100
1000
V
SD
,Source-to-Drain Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
4
Fig 8.
Maximum Safe Operating Area
www.irf.com
IRFZ48VSPbF
80
V
DS
V
GS
R
G
R
D
D.U.T.
+
V
DD
I
D
, Drain Current (A)
60
-
10V
40
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
Fig 10a.
Switching Time Test Circuit
20
V
DS
90%
0
25
50
75
100
125
150
175
T
C
, Case Temperature ( ° C)
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 9.
Maximum Drain Current Vs.
Case Temperature
10
Fig 10b.
Switching Time Waveforms
Thermal Response(Z
thJC
)
1
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
P
DM
t
1
t
2
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.001
0.01
0.1
1
0.01
0.00001
0.0001
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5