PD - 95229C
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
IRGB6B60KDPbF
IRGS6B60KDPbF
IRGSL6B60KDPbF
V
CES
= 600V
I
C
= 10A, T
C
=100°C
Features
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10μs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
• Lead-Free
G
E
t
sc
> 10μs, T
J
=150°C
n-channel
V
CE(on)
typ. = 1.8V
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220AB
IRGB6B60KDPbF
D
2
Pak
IRGS6B60KDPbF
TO-262
IRGSL6B60KDPbF
Absolute Maximum Ratings
Parameter
V
CES
I
C
@ T
C
= 25°C
I
C
@ T
C
= 100°C
I
CM
I
LM
I
F
@ T
C
= 25°C
I
F
@ T
C
= 100°C
I
FM
V
GE
P
D
@ T
C
= 25°C
P
D
@ T
C
= 100°C
T
J
T
STG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Max.
600
18
10
26
26
18
10
26
± 20
90
36
-55 to +150
300 (0.063 in. (1.6mm) from case)
Units
V
A
V
W
°C
Thermal Resistance
Parameter
R
θJC
R
θJC
R
θCS
R
θJA
R
θJA
Wt
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Junction-to-Ambient (PCB Mount, steady state)
Weight
Min.
–––
–––
–––
–––
–––
–––
Typ.
–––
–––
0.50
–––
–––
1.44
Max.
1.4
4.4
–––
62
40
–––
Units
°C/W
g
www.irf.com
01/07/13
1
IRGB/S/SL6B60KDPbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)CES
ΔV
(BR)CES
/ΔT
J
V
CE(on)
V
GE(th)
Δ
V
GE(th)
/
Δ
T
J
g
fe
I
CES
V
FM
I
GES
Min.
600
–––
1.5
–––
Gate Threshold Voltage
3.5
Temperature Coeff. of Threshold Voltage –––
Forward Transconductance
–––
Zero Gate Voltage Collector Current
–––
–––
Diode Forward Voltage Drop
–––
–––
Gate-to-Emitter Leakage Current
–––
Parameter
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
Typ.
–––
0.3
1.80
2.20
4.5
-10
3.0
1.0
200
1.25
1.20
–––
Max. Units
Conditions
–––
V
V
GE
= 0V, I
C
= 500μA
––– V/°C V
GE
= 0V, I
C
= 1.0mA, (25°C-150°C)
2.20
V
I
C
= 5.0A, V
GE
= 15V
2.50
I
C
= 5.0A,V
GE
= 15V,
T
J
= 150°C
5.5
V
V
CE
= V
GE
, I
C
= 250μA
––– mV/°C V
CE
= V
GE
, I
C
= 1.0mA, (25°C-150°C)
–––
S
V
CE
= 50V, I
C
= 5.0A, PW=80μs
150
μA
V
GE
= 0V, V
CE
= 600V
500
V
GE
= 0V, V
CE
= 600V, T
J
= 150°C
1.45
I
C
= 5.0A
1.40
V
I
C
= 5.0A
T
J
= 150°C
±100 nA
V
GE
= ±20V
Ref.Fig.
5, 6,7
9,10,11
9,10,11
12
8
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
Qg
Qge
Qgc
E
on
E
off
E
tot
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
tot
t
d(on)
t
r
t
d(off)
t
f
C
ies
C
oes
C
res
RBSOA
SCSOA
Erec
t
rr
I
rr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Reverse Bias Safe Operting Area
Short Circuit Safe Operting Area
Reverse Recovery energy of the diode
Diode Reverse Recovery time
Diode Peak Reverse Recovery Current
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Ref.Fig.
Max. Units
Conditions
–––
I
C
= 5.0A
–––
nC V
CC
= 400V
CT1
–––
V
GE
= 15V
CT4
210
μJ
I
C
= 5.0A, V
CC
= 400V
245
V
GE
= 15V,R
G
= 100Ω, L =1.4mH
455
Ls = 150nH
T
J
= 25°C
CT4
34
I
C
= 5.0A, V
CC
= 400V
26
V
GE
= 15V, R
G
= 100Ω L =1.4mH
230
ns
Ls = 150nH, T
J
= 25°C
22
CT4
260
I
C
= 5.0A, V
CC
= 400V
13,15
300
μJ
V
GE
= 15V,R
G
= 100Ω, L =1.4mH
WF1WF2
560
Ls = 150nH
T
J
= 150°C
14, 16
37
I
C
= 5.0A, V
CC
= 400V
CT4
26
V
GE
= 15V, R
G
= 100Ω L =1.4mH
255
ns
Ls = 150nH, T
J
= 150°C
WF1
27
WF2
–––
V
GE
= 0V
–––
pF
V
CC
= 30V
–––
f = 1.0MHz
4
T
J
= 150°C, I
C
= 26A, Vp =600V
FULL SQUARE
V
CC
= 500V, V
GE
= +15V to 0V,
R
G
= 100Ω
CT2
CT3
μs
T
J
= 150°C, Vp =600V, R
G
= 100Ω
10 ––– –––
WF4
V
CC
= 360V, V
GE
= +15V to 0V
17,18,19
––– 90 175
μJ
T
J
= 150°C
20, 21
––– 70
80
ns
V
CC
= 400V, I
F
= 5.0A, L = 1.4mH
CT4,WF3
––– 10
14
A
V
GE
= 15V,R
G
= 100Ω, Ls = 150nH
Typ.
18.2
1.9
9.2
110
135
245
25
17
215
13.2
150
190
340
28
17
240
18
290
34
10
Note:
to
are on page 15
2
www.irf.com
IRGB/S/SL6B60KDPbF
20
100
90
80
15
Ptot (W)
70
60
50
40
30
IC (A)
10
5
20
10
0
0
20
40
60
80
100 120 140 160
TC (°C)
0
0
20
40
60
80
100 120 140 160
T C (°C)
Fig. 1
- Maximum DC Collector Current vs.
Case Temperature
Fig. 2
- Power Dissipation vs. Case
Temperature
100
100
10
IC (A)
10
10
μs
IC A)
1
100
μs
DC
0.1
1
10
100
VCE (V)
1000
10000
1ms
1
0
10
100
1000
VCE (V)
Fig. 3
- Forward SOA
T
C
= 25°C; T
J
≤
150°C
Fig. 4
- Reverse Bias SOA
T
J
= 150°C; V
GE
=15V
www.irf.com
3
IRGB/S/SL6B60KDPbF
20
18
16
14
ICE (A)
20
VGE
VGE
VGE
VGE
VGE
= 18V
= 15V
= 12V
= 10V
= 8.0V
ICE (A)
18
16
14
12
10
8
6
4
2
0
12
10
8
6
4
2
0
0
VGE
VGE
VGE
VGE
VGE
= 18V
= 15V
= 12V
= 10V
= 8.0V
1
2
3
VCE (V)
4
5
6
0
1
2
3
VCE (V)
4
5
6
Fig. 5
- Typ. IGBT Output Characteristics
T
J
= -40°C; tp = 80μs
Fig. 6
- Typ. IGBT Output Characteristics
T
J
= 25°C; tp = 80μs
20
18
16
14
ICE (A)
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
IF (A)
25
20
15
10
5
0
0.0
0.5
-40°C
25°C
150°C
12
10
8
6
4
2
0
0
1
2
3
VCE (V)
4
5
6
1.0
VF (V)
1.5
2.0
Fig. 7
- Typ. IGBT Output Characteristics
T
J
= 150°C; tp = 80μs
Fig. 8
- Typ. Diode Forward Characteristics
tp = 80μs
4
www.irf.com
IRGB/S/SL6B60KDPbF
20
18
16
14
VCE (V)
VCE (V)
20
18
16
14
ICE = 3.0A
ICE = 5.0A
ICE = 10A
12
10
8
6
4
2
0
5
10
VGE (V)
15
20
5
10
VGE (V)
15
20
ICE = 3.0A
ICE = 5.0A
ICE = 10A
12
10
8
6
4
2
0
Fig. 9
- Typical V
CE
vs. V
GE
T
J
= -40°C
Fig. 10
- Typical V
CE
vs. V
GE
T
J
= 25°C
20
18
16
14
VCE (V)
40
35
30
ICE = 3.0A
ICE = 5.0A
ICE = 10A
T J = 25°C
T J = 150°C
10
8
6
4
2
0
5
10
VGE (V)
ICE (A)
12
25
20
15
10
5
T J = 150°C
T J = 25°C
0
5
10
VGE (V)
15
20
15
20
0
Fig. 11
- Typical V
CE
vs. V
GE
T
J
= 150°C
Fig. 12
- Typ. Transfer Characteristics
V
CE
= 50V; tp = 10μs
www.irf.com
5