PD - 9.1322B
IRL3303
HEXFET
®
Power MOSFET
l
l
l
l
l
l
Logic-Level Gate Drive
Advanced Process Technology
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Fully Avalanche Rated
D
V
DSS
= 30V
G
S
R
DS(on)
= 0.026Ω
I
D
= 38A
Description
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve the
lowest possible on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET Power MOSFETs are well
known for, provides the designer with an extremely efficient
device for use in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal resistance
and low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
TO-220AB
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
V
GS
E
AS
I
AR
E
AR
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
Max.
38
27
140
68
0.45
±16
130
20
6.8
5.0
-55 to + 175
300 (1.6mm from case)
10 lbf•in (1.1N•m)
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
Thermal Resistance
Parameter
R
θJC
R
θCS
R
θJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Min.
––––
––––
––––
Typ.
––––
0.50
––––
Max.
2.2
––––
62
Units
°C/W
8/25/97
IRL3303
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)DSS
∆V
(BR)DSS
/∆T
J
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Internal Source Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
Min.
30
–––
–––
–––
1.0
12
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.035
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
7.4
200
14
36
Max. Units
Conditions
–––
V
V
GS
= 0V, I
D
= 250µA
––– V/°C Reference to 25°C, I
D
= 1mA
0.026
V
GS
= 10V, I
D
= 20A
Ω
0.040
V
GS
= 4.5V, I
D
= 17A
–––
V
V
DS
= V
GS
, I
D
= 250µA
–––
S
V
DS
= 25V, I
D
= 20A
25
V
DS
= 30V, V
GS
= 0V
µA
250
V
DS
= 24V, V
GS
= 0V, T
J
= 150°C
100
V
GS
= 16V
nA
-100
V
GS
= -16V
26
I
D
= 20A
8.8
nC V
DS
= 24V
15
V
GS
= 4.5V, See Fig. 6 and 13
–––
V
DD
= 15V
–––
I
D
= 20A
ns
–––
R
G
= 6.5Ω, V
GS
= 4.5V
–––
R
D
= 0.7Ω, See Fig. 10
Between lead,
4.5 –––
6mm (0.25in.)
nH
from package
7.5 –––
and center of die contact
870 –––
V
GS
= 0V
340 –––
pF
V
DS
= 25V
170 –––
ƒ = 1.0MHz, See Fig. 5
D
G
S
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
MOSFET symbol
––– ––– 38
showing the
A
G
integral reverse
––– ––– 140
p-n junction diode.
––– ––– 1.3
V
T
J
= 25°C, I
S
= 20A, V
GS
= 0V
––– 72 110
ns
T
J
= 25°C, I
F
= 20A
––– 180 280
nC di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
D
S
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
V
DD
= 25V, starting T
J
= 25°C, L = 470µH
R
G
= 25Ω, I
AS
= 20A. (See Figure 12)
I
SD
≤
20A, di/dt
≤
140A/µs, V
DD
≤
V
(BR)DSS
,
T
J
≤
175°C
Pulse width
≤
300µs; duty cycle
≤
2%.
IRL3303
1000
VGS
15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOT TOM 2.5V
TOP
1000
I
D
, D ra in -to -S o u rc e C u rre n t (A )
100
I
D
, D ra in -to -S o u rc e C u rre n t (A )
100
VGS
15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
TOP
10
10
2 .5 V
1
1
2 .5V
0.1
0.1
1
2 0µ s PU LSE W ID TH
T
J
= 25 °C
10
100
A
0.1
0.1
1
2 0µ s PU L SE W ID TH
T
J
= 1 75 °C
10
100
A
V
D S
, Drain-to-S ource V oltage (V)
V
D S
, Drain-to-S ource Voltage (V )
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
1000
2.0
100
R
D S (o n )
, D ra in -to -S o u rc e O n R e si sta n ce
(N o rm a li ze d )
I
D
= 34 A
I
D
, D rain -to- S ou rce C ur ren t (A )
1.5
T
J
= 2 5 °C
T
J
= 1 75 °C
10
1.0
1
0.5
0.1
2
3
4
5
6
V
DS
= 1 5 V
2 0µ s PU L SE W ID TH
7
8
9
10
A
0.0
-60 -40 -20
0
20
40
60
80
V
G S
= 10 V
100 120 140 160 180
A
V
G S
, G ate-to -S ource V olta ge (V )
T
J
, Junction T emperature (°C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
IRL3303
1600
1400
1200
1000
800
600
V
G S
, G a te -to -S o u rce V o lta g e (V )
V
GS
C
is s
C
rss
C
is s C
oss
= 0 V,
f = 1M H z
= C
gs
+ C
gd
, C
ds
SH OR TE D
= C
gd
= C
d s
+ C
gd
15
I
D
= 20A
V
DS
= 2 4V
V
DS
= 1 5V
12
C , C a p a c ita n c e (p F )
C
os s
9
6
C
rss
400
200
0
1
10
100
3
A
0
0
10
20
FO R TEST CIR CU IT
SEE FIG UR E 13
30
40
A
V
D S
, D rain-to-S ource Voltage (V )
Q
G
, T otal Gate C harge (nC )
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
1000
I
S D
, R e v e rse D ra in C u rre n t (A )
OPE R ATIO N IN TH IS A RE A LIMITE D
BY R
D S(o n)
I
D
, D ra in C u rre n t (A )
100
100
10µ s
T
J
= 1 75 °C
T
J
= 25 °C
10
100 µs
10
1m s
1
0.0
0.5
1.0
1.5
V
G S
= 0 V
2.0
A
1
1
T
C
= 25 °C
T
J
= 17 5°C
S ing le Pulse
10
10m s
2.5
A
100
V
S D
, S ource-to-Drain Voltage (V )
V
D S
, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
IRL3303
40
V
DS
V
GS
I
D
, Drain Current (A)
30
R
D
D.U.T.
+
R
G
-
V
DD
4.5V
20
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
10
Fig 10a.
Switching Time Test Circuit
V
DS
90%
0
25
50
75
100
125
150
175
T
C
, Case Temperature
( ° C)
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 9.
Maximum Drain Current Vs.
Case Temperature
Fig 10b.
Switching Time Waveforms
10
Thermal Response (Z
thJC
)
1
D = 0.50
0.20
0.10
0.05
P
DM
SINGLE PULSE
(THERMAL RESPONSE)
t
1
t
2
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.0001
0.001
0.01
0.1
0.1
0.02
0.01
0.01
0.00001
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case