PD - 96161A
IRLML6402GPbF
l
l
l
l
l
l
l
l
Ultra Low On-Resistance
P-Channel MOSFET
SOT-23 Footprint
Low Profile (<1.1mm)
Available in Tape and Reel
Fast Switching
Lead-Free
Halogen-Free
HEXFET
®
Power MOSFET
G 1
3 D
S
2
V
DSS
= -20V
R
DS(on)
= 0.065Ω
Description
These P-Channel MOSFETs from International Rectifier utilize
advanced processing techniques to achieve extremely low on-
resistance per silicon area. This benefit, combined with the fast
switching speed and ruggedized device design that HEXFET
®
power MOSFETs are well known for, provides the designer with
an extremely efficient and reliable device for use in battery and
load management.
A thermally enhanced large pad leadframe has been incorporated
into the standard SOT-23 package to produce a HEXFET Power
MOSFET with the industry's smallest footprint. This package,
dubbed the Micro3™, is ideal for applications where printed
circuit board space is at a premium. The low profile (<1.1mm)
of the Micro3 allows it to fit easily into extremely thin application
environments such as portable electronics and PCMCIA cards.
The thermal resistance and power dissipation are the best
available.
Micro3™
Absolute Maximum Ratings
Parameter
V
DS
I
D
@ T
A
= 25°C
I
D
@ T
A
= 70°C
I
DM
P
D
@T
A
= 25°C
P
D
@T
A
= 70°C
E
AS
V
GS
T
J,
T
STG
Drain- Source Voltage
Continuous Drain Current, V
GS
@ -4.5V
Continuous Drain Current, V
GS
@ -4.5V
Pulsed Drain Current
Power Dissipation
Power Dissipation
Linear Derating Factor
Single Pulse Avalanche Energy
Gate-to-Source Voltage
Junction and Storage Temperature Range
Max.
-20
-3.7
-2.2
-22
1.3
0.8
0.01
11
± 12
-55 to + 150
Units
V
A
W
W/°C
mJ
V
°C
Thermal Resistance
Parameter
R
θJA
Maximum Junction-to-Ambient
Typ.
75
Max.
100
Units
°C/W
www.irf.com
1
12/14/11
IRLML6402GPbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)DSS
ΔV
(BR)DSS
/ΔT
J
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Min.
-20
–––
–––
–––
-0.40
6.0
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ. Max. Units
Conditions
––– –––
V
V
GS
= 0V, I
D
= -250μA
-0.009 ––– V/°C Reference to 25°C, I
D
= -1mA
0.050 0.065
V
GS
= -4.5V, I
D
= -3.7A
Ω
0.080 0.135
V
GS
= -2.5V, I
D
= -3.1A
-0.55 -1.2
V
V
DS
= V
GS
, I
D
= -250μA
––– –––
S
V
DS
= -10V, I
D
= -3.7A
––– -1.0
V
DS
= -20V, V
GS
= 0V
µA
––– -25
V
DS
= -20V, V
GS
= 0V, T
J
= 70°C
––– -100
V
GS
= -12V
nA
––– 100
V
GS
= 12V
8.0
12
I
D
= -3.7A
1.2 1.8
nC V
DS
= -10V
2.8 4.2
V
GS
= -5.0V
350 –––
V
DD
= -10V
48 –––
I
D
= -3.7A
ns
588 –––
R
G
= 89Ω
381 –––
R
D
= 2.7Ω
633 –––
V
GS
= 0V
145 –––
pF
V
DS
= -10V
110 –––
ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Min. Typ. Max. Units
–––
–––
–––
–––
–––
–––
–––
–––
29
11
-1.3
A
-22
-1.2
43
17
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= -1.0A, V
GS
= 0V
T
J
= 25°C, I
F
= -1.0A
di/dt = -100A/μs
D
S
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
Surface mounted on 1" square single layer 1oz. copper FR4 board,
steady state.
Pulse width
≤
400μs; duty cycle
≤
2%.
Starting T
J
= 25°C, L = 1.65mH
R
G
= 25Ω, I
AS
= -3.7A.
**
For recommended footprint and soldering techniques refer to application note #AN-994.
2
www.irf.com
IRLML6402GPbF
100
VGS
TOP
-7.00V
-5.00V
-4.50V
-3.50V
-3.00V
-2.70V
-2.50V
BOTTOM -2.25V
100
-I
D
, Drain-to-Source Current (A)
-I
D
, Drain-to-Source Current (A)
VGS
-7.00V
-5.00V
-4.50V
-3.50V
-3.00V
-2.70V
-2.50V
BOTTOM -2.25V
TOP
10
10
-2.25V
-2.25V
1
0.1
20μs PULSE WIDTH
T
J
= 25
°
C
1
10
100
1
0.1
20μs PULSE WIDTH
T
J
= 150
°
C
1
10
100
-V
DS
, Drain-to-Source Voltage (V)
-V
DS
, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
100
2.0
T
J
= 25
°
C
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
I
D
= -3.7A
-I
D
, Drain-to-Source Current (A)
1.5
T
J
= 150
°
C
1.0
0.5
10
2.0
V DS = -15V
20μs PULSE WIDTH
3.0
4.0
5.0
6.0
7.0
8.0
-V
GS
, Gate-to-Source Voltage (V)
0.0
-60 -40 -20
V
GS
= -4.5V
0
20
40
60
80 100 120 140 160
T
J
, Junction Temperature (
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRLML6402GPbF
1000
VGS = 0V,
f = 1 MHZ
Ciss = C + Cgd, C
gs
ds SHORTED
Crss = C
gd
Coss = C + Cgd
ds
10
I
D
= -3.7A
V
DS
=-10V
800
-V
GS
, Gate-to-Source Voltage (V)
8
C, Capacitance(pF)
Ciss
600
6
400
4
200
Coss
Crss
2
0
1
10
100
0
FOR TEST CIRCUIT
SEE FIGURE 13
0
3
6
9
12
VDS, Drain-to-Source Voltage (V)
Q
G
, Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
100
100
-I
SD
, Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
-I
D
, Drain Current (A)
I
10us
10
100us
10
T
J
= 150
°
C
1
1
1ms
T
J
= 25
°
C
10ms
0.1
0.2
V
GS
= 0 V
0.4
0.6
0.8
1.0
1.2
0.1
0.1
T
C
= 25 ° C
T
J
= 150 ° C
Single Pulse
1
10
100
-V
SD
,Source-to-Drain Voltage (V)
-V
DS
, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRLML6402GPbF
4.0
25
E
AS
, Single Pulse Avalanche Energy (mJ)
-I
D
, Drain Current (A)
3.0
20
ID
TOP
-1.7A
-3.0A
BOTTOM -3.7A
15
2.0
10
1.0
5
0.0
25
50
75
100
125
150
0
T
C
, Case Temperature ( °C)
25
Starting T
J
, Junction Temperature (
°
C)
50
75
100
125
150
Fig 9.
Maximum Drain Current Vs.
Case Temperature
Fig 10.
Maximum Avalanche Energy
Vs. Drain Current
1000
Thermal Response (Z
thJA
)
100
D = 0.50
0.20
10
0.10
0.05
0.02
0.01
1
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJA
+ T
A
0.0001
0.001
0.01
0.1
1
10
P
DM
t
1
t
2
0.1
0.00001
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5