PD - 94794
HEXFET Power MOSFET
Applications
l
High Frequency Synchronous Buck
Converters for Computer Processor Power
l
High Frequency Isolated DC-DC
Converters with Synchronous Rectification
for Telecom and Industrial Use
Benefits
l
Very Low RDS(on) at 4.5V V
GS
l
Ultra-Low Gate Impedance
l
Fully Characterized Avalanche Voltage
and Current
IRLR3714Z
IRLU3714Z
®
Qg
4.7nC
V
DSS
20V
R
DS(on)
max
15m
:
D-Pak
IRLR3714Z
I-Pak
IRLU3714Z
Absolute Maximum Ratings
Parameter
V
DS
V
GS
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
P
D
@T
C
= 100°C
T
J
T
STG
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Max.
20
± 20
37
Units
V
f
g
Maximum Power Dissipation
g
Maximum Power Dissipation
26
144
35
18
0.23
-55 to + 175
A
W
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
W/°C
°C
300 (1.6mm from case)
Thermal Resistance
Parameter
R
θJC
R
θJA
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB Mount)
Junction-to-Ambient
Typ.
Max.
4.28
50
110
Units
°C/W
gÃ
–––
–––
–––
Notes
through
are on page 11
www.irf.com
1
10/7/03
IRLR/U3714Z
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
DSS
∆ΒV
DSS
/∆T
J
R
DS(on)
V
GS(th)
∆V
GS(th)
/∆T
J
I
DSS
I
GSS
gfs
Q
g
Q
gs1
Q
gs2
Q
gd
Q
godr
Q
sw
Q
oss
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Q
gs2
+ Q
gd
)
Output Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min. Typ. Max. Units
20
–––
–––
–––
1.65
–––
–––
–––
–––
–––
21
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
14
12
20
2.1
-5.2
–––
–––
–––
–––
–––
4.7
1.7
0.7
1.7
0.6
2.4
2.6
5.4
7.6
9.2
4.3
560
180
95
–––
–––
15
25
2.55
–––
1.0
150
100
-100
–––
7.1
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
pF
V
GS
= 0V
V
DS
= 10V
ns
nC
nC
V
DS
= 10V
V
GS
= 4.5V
I
D
= 12A
S
nA
V
mV/°C
µA
V
Conditions
V
GS
= 0V, I
D
= 250µA
mV/°C Reference to 25°C, I
D
= 1mA
mΩ V
GS
= 10V, I
D
= 15A
V
GS
= 4.5V, I
D
e
= 12A
e
V
DS
= V
GS
, I
D
= 250µA
V
DS
= 16V, V
GS
= 0V
V
DS
= 16V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
V
DS
= 10V, I
D
= 12A
See Fig. 16
V
DS
= 10V, V
GS
= 0V
V
DD
= 15V, V
GS
= 4.5V
I
D
= 12A
Clamped Inductive Load
e
ƒ = 1.0MHz
Avalanche Characteristics
E
AS
I
AR
E
AR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
Ã
Repetitive Avalanche Energy
d
Typ.
–––
–––
–––
Max.
31
12
3.5
Units
mJ
A
mJ
–––
–––
–––
–––
–––
–––
–––
–––
21
8.5
Diode Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
37
f
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= 12A, V
GS
= 0V
T
J
= 25°C, I
F
= 12A, V
DD
= 10V
di/dt = 100A/µs
A
144
1.0
32
13
V
ns
nC
Ã
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
IRLR/U3714Z
1000
TOP
V
GS
1000
TOP
100
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
10V
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V
BOTTOM 3.0V
100
10V
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V
BOTTOM 3.0V
V
GS
10
10
1
3.0V
60µs PULSE WIDTH
Tj = 25°C
3.0V
60µs PULSE WIDTH
Tj = 175°C
1
0.1
0
1
1
10
10
100
100
0.1
0.1
0
1
1
10
10
100
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
1000
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current
(Α)
ID = 30A
VGS = 10V
T J = 25°C
100
1.5
T J = 175°C
10
1.0
VDS = 10V
60µs PULSE WIDTH
1
2.0
4.0
6.0
8.0
10.0
0.5
-60 -40 -20
0
20
40
60
80 100 120 140 160
VGS, Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
vs. Temperature
www.irf.com
3
IRLR/U3714Z
10000
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
12
ID= 12A
VGS, Gate-to-Source Voltage (V)
10
8
6
4
2
0
VDS= 20V
VDS= 10V
C, Capacitance (pF)
1000
Ciss
Coss
100
Crss
10
1
10
100
0
2
4
6
8
10
12
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5.
Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge vs.
Gate-to-Source Voltage
1000.0
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100.0
T J = 175°C
10.0
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
10
100µsec
1msec
1.0
TJ = 25°C
VGS = 0V
0.1
0.0
0.5
1.0
1.5
2.0
VSD, Source-toDrain Voltage (V)
1
Tc = 25°C
Tj = 175°C
Single Pulse
0
1
10
10msec
0.1
100
VDS , Drain-toSource Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRLR/U3714Z
40
LIMITED BY PACKAGE
2.6
VGS(th) Gate threshold Voltage (V)
2.4
2.2
2.0
1.8
1.6
1.4
1.2
-75
-50
-25
0
25
50
75
100
125
150
ID , Drain Current (A)
30
ID = 250µA
20
10
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
T J , Temperature ( °C )
Fig 9.
Maximum Drain Current vs.
Case Temperature
Fig 10.
Threshold Voltage vs. Temperature
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.05
R
1
R
1
τ
J
τ
1
τ
2
R
2
R
2
R
3
R
3
τ
3
τ
C
τ
τ
3
0.1
0.02
0.01
τ
J
τ
1
τ
2
Ri (°C/W)
1.2525
2.423
0.6041
τi
(sec)
0.00015
0.00098
0.00984
0.01
Ci=
τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5