ILLUMINATION
LUXEON HR30
Assembly and Handling Information
Introduction
This application brief addresses the recommended assembly and handling
guidelines for LUXEON HR30 emitter. This emitter is specifically designed and tested
for use in the most demanding environments and conditions. This emitter delivers
high efficacy and quality of light for distributed light source applications in a compact
3.0mm x 3.0mm package. Proper assembly, handling, and thermal management, as
outlined in this application brief, ensure high optical output and reliability of these
emitters.
Scope
The assembly and handling guidelines in this application brief apply to LUXEON 3030
HR30 with the following part number designation:
L130 – AABBCCHR00000
Where:
AA –
BB –
CC –
designates nominal ANSI CCT (27=2700K, 30=3000K, etc.)
designates minimum CRI (70=70CRI, 80=80CRI, etc.)
designated ESD protection level per JEDEC JS-001-2012 (00=2kV and 0T=8kV)
In the remainder of this document the term LUXEON emitter refers to any product in
the LUXEON product series listed above. Any handling requirements that are specific
to a subset of LUXEON emitters will be clearly marked.
AB217 LUXEON HR30 Application Brief ©2016 Lumileds Holding B.V. All rights reserved.
Table of Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1 . Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.2 Optical Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.3 Handling Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.4 Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.5 Electrical Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.6 Mechanical Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2 . PCB Design Guidelines for the LUXEON Emitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2.1 PCB Footprint and Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2.2 Surface Finishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.3 Minimum Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.4 PCB Substrate Selection and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3 . Thermal Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
4 . Thermal Measurement Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
5 . Assembly Process Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
5.1 Stencil Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
5.2 Solder Paste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
5.3 Solder Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
5.4 Pick and Place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
5.5 Electrostatic Discharge Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
5.6 JEDEC Moisture Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
6 . Environmental Corrosion Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
7 . Packaging Considerations — Chemical Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
AB217 LUXEON HR30 Application Brief 20160504 ©2016 Lumileds Holding B.V. All rights reserved.
2
1. Component
1.1 Description
The LUXEON HR30 emitter (Figure 1) is a SMC (silicone resin molding compound) molded, no-lead, surface mount package
consisting of a symmetrical anode and cathode pads. A small chamfer corner on the top of the package marks the cathode
side of the emitter. The heat generated by the LED chips are being dissipated equally through both electrode pads. The
silicone encapsulant protects the LED chips and the wire bonds against external environment. The lead frame and the pad
finishes are plated with gold. This emitter is available with and without a transient voltage suppressor (TVS) chip.
Figure 1. Package rendering of LUXEON HR30 emitter.
1.2 Optical Center
The optical center coincides with the mechanical center of the LUXEON emitter. Optical rayset data for the LUXEON
emitter are available on the Lumileds website at
www.lumileds.com.
1.3 Handling Precautions
The LUXEON emitter is designed to maximize light output and reliability. However, improper handling of the device may
damage the silicone coating and affect the overall performance and reliability. In order to minimize the risk of damage to
the silicone coating during handling, the LUXEON emitter should only be picked up from the side of the package (Figure 2).
Figure 2. Correct handling (left) and incorrect handling (right) of LUXEON emitters.
AB217 LUXEON HR30 Application Brief 20160504 ©2016 Lumileds Holding B.V. All rights reserved.
3
1.4 Cleaning
The LUXEON emitter should not be exposed to dust and debris. Excessive dust and debris may cause a drastic decrease
in optical output. In the event that a LUXEON emitter requires cleaning, first try a gentle swabbing using a lint-free swab.
If needed, a lint-free swab and isopropyl alcohol (IPA) can be used to gently remove dirt from the silicone coating. Do not
use other solvents as they may adversely react with the package of the LUXEON emitter. For more information regarding
chemical compatibility, see Section 6.
1.5 Electrical Isolation
The LUXEON emitter contains two electrode pads on the package. It is important to keep sufficient distance between the
LUXEON emitter package and any other objects or neighboring LUXEON emitters to prevent any accidental shorts.
In order to avoid any electrical shocks, flashover and/or damage to the LUXEON emitter, each design needs to comply with
the appropriate standards of safety and isolation distances, known as clearance and creepage distances, respectively (e.g.
IEC60950, clause 2.10.4).
1.6 Mechanical Files
Mechanical files for the LUXEON emitter are available on the Lumileds website at
www.lumileds.com.
2. PCB Design Guidelines for the LUXEON Emitter
The LUXEON emitter is designed to be soldered onto a Printed Circuit Board (PCB). To ensure optimal operation, the PCB
should be designed to minimize the overall thermal resistance between the LED package and the heatsink.
2.1 PCB Footprint and Land Pattern
The recommended PCB footprint design for the LUXEON emitter is shown in Figure 3. In order to ensure proper heat
dissipation from the emitter electrodes to the PCB, it is best to extend the top copper layer of the PCB beyond the
perimeter of the LUXEON emitter (see 2.4).
2.50
Package outline
1.00
0.15
Solder mask
Stencil
Top copper
0.50
Package geometric center
0.90
2.40
Figure 3. Recommended PCB footprint design for the LUXEON emitter. Dimensions are in mm.
AB217 LUXEON HR30 Application Brief 20160504 ©2016 Lumileds Holding B.V. All rights reserved.
4
2.2 Surface Finishing
Lumileds recommends using a high temperature organic solderability preservative (OSP) or electroless nickel immersion
gold (ENIG) plating on the exposed copper pads.
2.3 Minimum Spacing
Lumileds recommends a minimum edge to edge spacing between LUXEON emitters of 0.5 mm. Placing multiple LUXEON
emitters too close to each other may adversely impact the ability of the PCB to dissipate the heat from the emitters.
2.4 PCB Substrate Selection and Design
Table 1 provides a summary of various relevant performance characteristics of common PCB substrates to aid material
selection. Specific PCB design considerations for each substrate material are summarized below.
Table 1: General PCB substrate characteristics for consideration when designing a PCB for LUXEON HR30 emitter.
FR-4/CEM-3
Cost
PCB thermal conductivity performance
LED assembly packing density (thermal
resistance consideration)
Dielectric withstand voltage (top copper
to bottom of substrate)
Low to medium
Low to high (FR4 with filled and capped
vias but with increase cost)
Generally suitable for low density
application with a large spacing between
LEDs and/or low operating currents
Extremely high (>20kV/mm)
Medium
High
Suitable for high density application with
close spacing between emitters
Depends on dielectric material thickness
and its property. Typically 4kV for 100um
thick.
MCPCB
Metal Core PCB
The most common MCPCB construction consists of the following layers (Figure 4):
• A metal substrate, typically aluminum.
• Epoxy dielectric layer. This is the most important layer in the MCPCB construction as it affects the thermal
performance and electrical breakdown strength. The typical thermal conductivity of the dielectric layer on a MCPCB
is around 2Wm
-1
K
-1
. A higher value is better for good thermal performance. A thinner dielectric layer is better for
thermal performance but can negatively impact the ability of the MCPCB to withstand electrical insulation test to meet
minimum electrical safety standards as required in certain lighting markets. The typical dielectric thickness layer is
about 100µm.
• Top copper layer. A thicker copper layer improves heat spreading into the PCB but may pose challenges for PCB
manufacturers when fabricating narrow traces or spaces. A thickness of 1oz (35µm) or 2oz (70µm) is common. For
optimum thermal performance on both 1oz and 2oz copper design, the copper area should extend at least 4mm
away from the package outline.
• Use of white solder mask.
Figure 4. MCPCB typical cross section of the three-pad openings with aluminum substrate.
AB217 LUXEON HR30 Application Brief 20160504 ©2016 Lumileds Holding B.V. All rights reserved.
5