LTC1052/LTC7652
Zero-Drift
Operational Amplifier
FEATURES
■
■
■
■
■
■
DESCRIPTIO
■
■
Guaranteed
Max Offset: 5µV
Guaranteed
Max Offset Drift: 0.05µV/°C
Typ Offset Drift: 0.01µV/°C
Excellent Long Term Stability: 100nV/√Month
Guaranteed
Max Input Bias Current: 30pA
Over Operating Temperature Range:
Guaranteed
Min Gain: 120dB
Guaranteed
Min CMRR: 120dB
Guaranteed
Min PSRR: 120dB
Single Supply Operation: 4.75V to 16V
(Input Voltage Range Extends to Ground)
External Capacitors can be Returned to V
–
with No
Noise Degradation
The LTC
®
1052 and LTC7652 are low noise zero-drift op
amps manufactured using Linear Technology’s enhanced
LTCMOS
TM
silicon gate process. Chopper-stabilization
constantly corrects offset voltage errors. Both initial offset
and changes in the offset due to time, temperature and
common mode voltage are corrected. This, coupled with
picoampere input currents, gives these amplifiers
unmatched performance.
Low frequency (1/f) noise is also improved by the
chopping technique. Instead of increasing continuously
at a 3dB/octave rate, the internal chopping causes noise to
decrease at low frequencies.
The chopper circuitry is entirely internal and completely
transparent to the user. Only two external capacitors
are required to alternately sample-and-hold the offset
correction voltage and the amplified input signal. Control
circuitry is brought out on the 14-pin and 16-pin versions
to allow the sampling of the LTC1052 to be synchronized
with an external frequency source.
, LTC and LT are registered trademarks of Linear Technology Corporation.
LTCMOS is a trademark of Linear Technology Corporation.
Teflon is a trademark of DuPont.
APPLICATIO S
■
■
■
■
Thermocouple Amplifiers
Strain Gauge Amplifiers
Low Level Signal Processing
Medical Instrumentation
TYPICAL APPLICATIO
5V
3
Ultralow Noise, Low Drift Amplifier
160
VOLTAGE NOISE DENSITY (nV/√Hz)
+
–
1
7
6
8
4
0.1µF
–5V
0.1µF
140
120
100
80
60
40
20
0
0
100
200
300
400
500
LTC1052
2
0.1µF
5V
100k
INPUT
3K
3
+
–
1 5V
7
68k
8
6
1.5k
5V
LT
®
1007
2
4
– 5V
OUTPUT
100k
VOS = 3µV
VOS∆T = 50nV/°C
NOISE = 0.06µV
P-P
0.1Hz TO 10Hz
100Ω
LTC1052/7652 • TA01
U
Noise Spectrum
FREQUENCY (Hz)
LTC1052/7652 • TA02
U
U
1052fa
1
LTC1052/LTC7652
ABSOLUTE
AXI U
RATI GS
Total Supply Voltage (V
+
to V
–
) ............................... 18V
Input Voltage ........................ (V
+
+ 0.3V) to (V
–
– 0.3V)
Output Short Circuit Duration .......................... Indefinite
Storage Temperature Range .................. –55°C to 150°C
PACKAGE/ORDER I FOR ATIO
TOP VIEW
C
EXTB
8
C
EXTA
1
+
7 V /CASE
– IN
2
–
+
5
4
V
–
6
OUTPUT
+ IN 3
LTC1052 OUTPUT CLAMP
LTC7652 C
RETURN
METAL CAN H PACKAGE
OBSOLETE PACKAGE
Consider the N8 Package for Alternate Source
ORDER PART NUMBER
LTC7652CH
LTC1052CH
LTC1052MH
TOP VIEW
C
EXTA
–
IN
REPLACES
ICL7652CTV
ICL7652ITV
ICL7650CTV-1
ICL7650ITV-1
ICL7650CTV
ICL7650ITV
ICL7650MTV
8 C
EXTB
1
2
+N 3
V
–
4
–
+
7 V
+
6 OUTPUT
OUTPUT
5
CLAMP
N8 PACKAGE
8-LEAD PDIP
T
JMAX
= 110°C,
θ
JA
= 150°C/W
J8 PACKAGE, 8-LEAD CERDIP
OBSOLETE PACKAGE
Consider the N8 Package for Alternate Source
ORDER PART NUMBER
LTC1052CN8
LTC1052CJ8
LTC1052MJ8
REPLACES
ICL7650CPA
ICL7650IJA
Consult LTC Marketing for parts specified with wider operating temperature ranges.
2
U
U
W
W W
U
W
(Notes 1 and 2)
Operating Temperature Range
LTC1052C/LTC7652C ..........................–40°C to 85°C
LTC1052M
(OBSOLETE).....................–55°C
to 125°C
Lead Temperature (Soldering, 10 sec).................. 300°C
TOP VIEW
C
EXTB
1
14 INT/EXT
13 CLK IN
12 CLK OUT
C
EXTA
2
NC (GUARD) 3
– IN 4
+ IN 5
NC (GUARD) 6
V– 7
–
+
11 V +
10 OUTPUT
9 OUTPUT CLAMP
8 C
RETURN
N PACKAGE, 14-LEAD CERDIP
T
JMAX
= 110°C,
θ
JA
= 130°C/W
J PACKAGE, 14-LEAD CERDIP
OBSOLETE PACKAGE
Consider the N14 Package for Alternate Source
ORDER PART NUMBER
LTC1052CN
LTC1052CJ
LTC1052MJ
REPLACES
ICL7652CPD
ICL7650CPD
ICL7652IJD
ICL7650IJD
ICL7650MJD
TOP VIEW
C
EXTB
C
EXTA
NC (GUARD)
– IN
+ IN
NC (GUARD)
V–
NC
1
2
3
4
5
6
7
8
16 INT/EXT
15 CLK IN
14 CLK OUT
13 V +
12 OUTPUT
11 OUTPUT CLAMP
10 C
RETURN
9
NC
SW PACKAGE
16-LEAD PLASTIC (WIDE) SO
T
JMAX
= 110°C,
θ
JA
= 150°C/W
ORDER PART NUMBER
LTC1052CSW
REPLACES
LTC1052CS
1052fa
LTC1052/LTC7652
ELECTRICAL CHARACTERISTICS
SYMBOL
V
OS
PARAMETER
Input Offset Voltage
(Note 3)
(Note 3)
The
●
denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at T
A
= 25°C. V
S
=
±5V,
test circuit TC1, unless otherwise noted.
CONDITIONS
LTC1052M
MIN
TYP
MAX
±0.5
●
LTC1052C/LTC7652C
MIN
TYP
MAX
±0.5
±0.01
100
±30
±1
1.5
0.5
0.6
120
120
120
±4.7
140
150
150
±4.85
±4.95
4
1.2
±5
±0.05
±90
±350
±30
±175
UNITS
µV
µV/°C
nV/√Month
pA
pA
pA
pA
µV
P-P
µV
P-P
fA/√Hz
dB
dB
dB
V
V
V/µs
MHz
±5
±0.05
±90
±2000
±30
±1000
∆V
OS
/∆Temp Average Input Offset Drift
∆V
OS
/∆Time Long-Term Offset Voltage Stability
I
OS
I
B
e
nP-P
I
n
CMRR
PSRR
A
VOL
V
OUT
SR
GBW
I
S
f
S
Input Offset Current
±0.01
100
±30
●
Input Bias Current
●
±1
R
S
= 100Ω, DC to 10HZ, TC3
R
S
= 100Ω, DC to 1HZ, TC3
f = 10Hz (Note 5)
V
CM
= V
–
to 2.7V
V
SUPPLY
=
±2.375V
to
±8V
R
L
= 10k, V
OUT
=
±4V
R
L
= 10k
R
L
= 100k
R
L
= 10k, C
L
= 50pF
No Load
●
●
●
●
●
Input Noise Voltage
Input Noise Current
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 4)
Slew Rate
Gain Bandwidth Product
Supply Current
Internal Sampling Frequency
Clamp On Current
Clamp Off Current
1.5
0.5
0.6
120
120
120
±4.7
140
150
150
±4.85
±4.95
4
1.2
1.7
330
2.0
3.0
25
100
2
1.7
330
100
10
2.0
3.0
mA
mA
Hz
µA
R
L
= 100k
–4V < V
OUT
< 4V
●
●
25
100
10
100
1
pA
nA
Note 1:
Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.
Note 2:
Connecting any terminal to voltages greater than V
+
, or less than
V
–
, may cause destructive latch-up. It is recommended that no sources
operating from external supplies be applied prior to power-up of the
LTC1052/LTC7652.
Note 3:
These parameters are guaranteed by design. Thermocouple effects
preclude measurement of the voltage levels in high speed automatic
testing. V
OS
is measured to a limit determined by test equipment
capability. Voltages on C
EXTA
and C
EXTB
, A
VOL
, CMRR and PSRR are
measured to insure proper operation of the nulling loop to ensure meeting
the V
OS
and V
OS
drift specifications. See Package-Induced V
OS
in the
Applications Information section.
Note 4:
Output clamp not connected.
Note 5:
Current noise is calculated from the formula: i
n
= (2q I
B
)
1/2
, where
q = 1.6 • 10
–19
coulomb.
TYPICAL PERFOR A CE CHARACTERISTICS
Input Noise Voltage
5µV
0
V
S
=
±5V,
TEST CIRCUIT (TC3)
DC TO 1Hz
5µV
DC TO 10Hz
0
U W
10 SEC.
1052fa
3
LTC1052/LTC7652
TYPICAL PERFOR A CE CHARACTERISTICS
Offset Voltage vs Sampling
Frequency
12
V
SUPPLY=
±5V
10
8
6
4
2
0
0
500
1000
1500
SAMPLING FREQUENCY, f
S
(Hz)
2000
10Hz PEAK-TO-PEAK NOISE (µV)
INPUT BIAS CURRENT, I
B
(pA)
V
OS
(µV)
Aliasing Error
8
OUTPUT SPECTRUM (dB)
(3Hz BANDWIDTH)
COMMON MODE RANGE (V)
V
S
=
±5V
A
V
= –1
TEST CIRCUIT TC2
2
0
–2
–4
–6
–8
0
1
2
4
5
6
3
SUPPLY VOLTAGE (±V)
7
8
V
CM
= V
–
IV/DIV
f
I
–f
S
50Hz/DIV
f
S
Small-Signal Transient Response*
OUTPUT VOLTAGE (20mV/DIV)
OUTPUT VOLTAGE (2mV/DIV)
VOLTAGE GAIN (dB)
A
V
= 1
2µs/DIV
R
L
= 10k
C
L
= 100pF
V
S
=
±5V
*RESPONSE IS NOT DEPENDENT ON PHASE OF CLOCK
4
U W
f
I
1OHz
P-P
Noise vs Sampling
Frequency
5
V
SUPPLY=
±
5V
1000
900
800
700
600
500
400
300
200
100
Input Bias Current vs
Temperature
GUARANTEED
4
3
2
1
GUARANTEED
0
100
1k
SAMPLING FREQUENCY, f
S
(Hz)
10k
0
50
25
0
75 100
–50 –25
AMBIENT TEMPERATURE, T
A
(°C)
125
LTC1052/7652 • TPC01
LTC1052/7652 • TPC03
LTC1052/7652 • TPC02
Common Mode Input Range vs
Supply Voltage
6
4
Overload Recovery
(Output Clamp Not Used)
V
S
=
±5V
OVERDRIVE
REMOVED
A
V
= –100
50ms/DIV
LTC1052/7652 • TPC04
Large-Signal Transient Response*
120
100
80
Gain Phase vs Frequency
60
V
S
=
±
5V
C
L
= 100pF
PHASE
60
GAIN
40
20
0
140
160
180
200
10
3
10
5
10
4
FREQUENCY (Hz)
10
6
220
10
7
120
80
PHASE SHIFT (DEGREES)
100
A
V
= 1
R
L
= 10k
C
L
= 100pF
V
S
=
±5V
2µs/DIV
–20
–40
100
LTC1052/LTC7652 • TPC06
1052fa
LTC1052/LTC7652
TYPICAL PERFOR A CE CHARACTERISTICS
Broadband Noise, C
EXT
= 0.1µF
Broadband Noise, C
EXT
= 1.0µF
Broadband Noise Test Circuit (TC2)
R2
1M
INPUT REFERRED NOISE
(5µV/DIV)
INPUT REFERRED NOISE
(5µV/DIV)
A
V
= – 1000
1ms/DIV
Supply Current vs Supply Voltage
2.5
SUPPLY VOLTAGE =
±
5V
SUPPLY CURRENT, I
S
(mA)
SUPPLY CURRENT, I
S
(mA)
SHORT-CIRCUIT OUTPUT CURRENT, I
OUT (mA)
2.0
1.5
1.0
0.5
0
8
10
12
14
16
4 5 6
+
TO V
–
(V)
TOTAL SUPPLY VOLTAGE, V
LTC1052/LTC7652 • TPC08
Sampling Frequency vs Voltage
600
T
A
= 25°C
SAMPLING FREQUENCY, f
S
(Hz)
SAMPLING FREQUENCY, f
S
(Hz)
500
400
300
200
100
0
500
600
14
16
8
10
12
4 5 6
TOTAL SUPPLY VOLTAGE, V
+
TO V
–
(V)
LTC1052/LTC7652 • TPC11
U W
R1
1k
R3
1k
2
–
+
1
5V
7
6
8
4
C
EXTB
3
LTC1052
C
EXTA
A
V
= –1000
1ms/DIV
– 5V
LTC1052/7652 • TPC07
Supply Current vs Temperature
3.0
8
6
4
2
0
– 10
– 20
– 30
Output Short-Circuit Current vs
Supply Voltage
I
SOURCE
V
OUT
= V
–
2.0
1.0
I
SINK
V
OUT
= V
+
12
16
4 5 6
10
14
8
TOTAL SUPPLY VOLTAGE, V
+
TO V
–
(V)
LTC1052/LTC7652 • TPC10
0
50
100
–50 –25
25
75
0
AMBIENT TEMPERATURE, T
A
(°C)
125
LTC1052/LTC7652 • TPC09
Sampling Frequency vs
Temperature
SUPPLY VOLTAGE =
±
5V
Comparator Operation
V
REF
*
400
1k
2
–
+
1
5
5V
7
6
8
4
0.1µF
1k
300
200
100
0
50
100
– 50 – 25
25
75
0
AMBIENT TEMPERATURE, T
A
(°C)
LTC1052
3
V
IN
0.1µF
* – 5V
≤
V
REF
≤
2.7 V
– 5V
LTC1052/7652 • TPC13
125
LT1052/LTC7652 • TPC12
1052fa
5