首页 > 器件类别 > 分立半导体 > 晶体管

MTB15N06V

Power Field Effect Transistor

器件类别:分立半导体    晶体管   

厂商名称:ON Semiconductor(安森美)

厂商官网:http://www.onsemi.cn

下载文档
器件参数
参数名称
属性值
是否Rohs认证
不符合
包装说明
CASE 418B-02, D2PAK-3
针数
3
制造商包装代码
CASE 418B-02
Reach Compliance Code
_compli
ECCN代码
EAR99
其他特性
AVALANCHE RATED
雪崩能效等级(Eas)
113 mJ
外壳连接
DRAIN
配置
SINGLE WITH BUILT-IN DIODE
最小漏源击穿电压
60 V
最大漏极电流 (Abs) (ID)
15 A
最大漏极电流 (ID)
15 A
最大漏源导通电阻
0.12 Ω
FET 技术
METAL-OXIDE SEMICONDUCTOR
JESD-30 代码
R-PSSO-G2
JESD-609代码
e0
元件数量
1
端子数量
2
工作模式
ENHANCEMENT MODE
最高工作温度
175 °C
封装主体材料
PLASTIC/EPOXY
封装形状
RECTANGULAR
封装形式
SMALL OUTLINE
峰值回流温度(摄氏度)
NOT SPECIFIED
极性/信道类型
N-CHANNEL
最大功率耗散 (Abs)
55 W
最大脉冲漏极电流 (IDM)
45 A
认证状态
Not Qualified
表面贴装
YES
端子面层
Tin/Lead (Sn/Pb)
端子形式
GULL WING
端子位置
SINGLE
处于峰值回流温度下的最长时间
NOT SPECIFIED
晶体管应用
SWITCHING
晶体管元件材料
SILICON
Base Number Matches
1
文档预览
MTB15N06V
Designer’s™ Data Sheet
TMOS V™
Power Field Effect
Transistor
D
2
PAK for Surface Mount
http://onsemi.com
N−Channel Enhancement−Mode Silicon
Gate
TMOS V is a new technology designed to achieve an on−resistance
area product about one−half that of standard MOSFETs. This new
technology more than doubles the present cell density of our 50 and 60
volt TMOS devices. Just as with our TMOS E−FET designs, TMOS V
is designed to withstand high energy in the avalanche and
commutation modes. Designed for low voltage, high speed switching
applications in power supplies, converters and power motor controls,
these devices are particularly well suited for bridge circuits where
diode speed and commutating safe operating areas are critical and
offer additional safety margin against unexpected voltage transients.
New Features of TMOS V
TMOS POWER FET
15 AMPERES, 60 VOLTS
R
DS(on)
= 0.12
W
D
2
PAK
CASE 418B−02,
Style 2
D
On−resistance Area Product about One−half that of Standard
Features Common to TMOS V and TMOS E−FETs
G
TM
MOSFETs with New Low Voltage, Low R
DS(on)
Technology
Faster Switching than E−FET Predecessors
S
Avalanche Energy Specified
I
DSS
and V
DS(on)
Specified at Elevated Temperature
Static Parameters are the Same for both TMOS V and TMOS E−FET
Surface Mount Package Available in 16 mm 13−inch/2500 Unit Tape
& Reel, Add T4 Suffix to Part Number
©
Semiconductor Components Industries, LLC, 2006
August, 2006
Rev. 3
1
Publication Order Number:
MTB15N06V/D
MTB15N06V
MAXIMUM RATINGS
(T
C
= 25°C unless otherwise noted)
Rating
Drain−Source Voltage
Drain−Gate Voltage (R
GS
= 1.0 MΩ)
Gate−Source Voltage — Continuous
Gate−Source Voltage
— Non−Repetitive (t
p
10 ms)
Drain Current — Continuous @ 25°C
Drain Current
— Continuous @ 100°C
Drain Current
— Single Pulse (t
p
10
μs)
Total Power Dissipation @ 25°C
Derate above 25°C
Total Power Dissipation @ T
A
= 25°C (1)
Operating and Storage Temperature Range
Single Pulse Drain−to−Source Avalanche Energy — Starting T
J
= 25°C
(V
DD
= 25 Vdc, V
GS
= 10 Vdc, I
L
= 15 Apk, L = 1.0 mH, R
G
= 25
Ω)
Thermal Resistance — Junction to Case
Thermal Resistance
— Junction to Ambient
Thermal Resistance
— Junction to Ambient (1)
Maximum Lead Temperature for Soldering Purposes, 1/8″ from case for 10 seconds
(1) When surface mounted to an FR4 board using the minimum recommended pad size.
Symbol
V
DSS
V
DGR
V
GS
V
GSM
I
D
I
D
Value
60
60
±
20
±
25
15
8.7
45
55
0.37
3.0
55 to 175
113
2.73
62.5
50
260
Unit
Vdc
Vdc
Vdc
Vpk
Adc
Apk
Watts
W/°C
Watts
°C
mJ
°C/W
I
DM
P
D
T
J
, T
stg
E
AS
R
θJC
R
θJA
R
θJA
T
L
°C
Designer’s Data for “Worst Case” Conditions
— The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
Designer’s is a trademark of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.
Thermal Clad is a trademark of the Bergquist Company.
http://onsemi.com
2
MTB15N06V
ELECTRICAL CHARACTERISTICS
(T
J
= 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Drain−Source Breakdown Voltage
(V
GS
= 0 Vdc, I
D
= 0.25 mAdc)
Temperature Coefficient (Positive)
Zero Gate Voltage Drain Current
(V
DS
= 60 Vdc, V
GS
= 0 Vdc)
(V
DS
= 60 Vdc, V
GS
= 0 Vdc, T
J
= 150°C)
Gate−Body Leakage Current (V
GS
=
±
20 Vdc, V
DS
= 0)
ON CHARACTERISTICS (1)
Gate Threshold Voltage
(V
DS
= V
GS
, I
D
= 250
μAdc)
Temperature Coefficient (Negative)
Static Drain−Source On−Resistance (V
GS
= 10 Vdc, I
D
= 7.5 Adc)
Drain−Source On−Voltage (V
GS
= 10 Vdc)
(I
D
= 15 Adc)
(I
D
= 7.5 Adc, T
J
= 150°C)
Forward Transconductance (V
DS
= 8.0 Vdc, I
D
= 7.5 Adc)
DYNAMIC CHARACTERISTICS
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
SWITCHING CHARACTERISTICS (2)
Turn−On Delay Time
Rise Time
Turn−Off Delay Time
Fall Time
Gate Charge
(See Figure 8)
(V
DD
= 30 Vdc, I
D
= 15 Adc,
V
GS
= 10 Vdc,
R
G
= 9.1
Ω)
t
d(on)
t
r
t
d(off)
t
f
Q
T
(V
DS
= 48 Vdc, I
D
= 15 Adc,
V
GS
= 10 Vdc)
Q
1
Q
2
Q
3
SOURCE−DRAIN DIODE CHARACTERISTICS
Forward On−Voltage (1)
(I
S
= 15 Adc, V
GS
= 0 Vdc)
(I
S
= 15 Adc, V
GS
= 0 Vdc, T
J
= 150°C)
V
SD
Vdc
1.05
0.9
59.3
46
13.3
0.165
4.5
7.5
1.6
μC
nH
nH
ns
7.6
51
18
33
14.4
2.8
6.4
6.1
20
100
40
70
20
nC
ns
(V
DS
= 25 Vdc, V
GS
= 0 Vdc,
f = 1.0 MHz)
C
iss
C
oss
C
rss
469
148
35
660
200
60
pF
V
GS(th)
2.0
4.0
2.7
5.0
0.08
2.0
6.2
4.0
0.12
2.2
1.9
mhos
Vdc
mV/°C
Ohm
Vdc
V
(BR)DSS
60
67
10
100
100
Vdc
mV/°C
μAdc
Symbol
Min
Typ
Max
Unit
I
DSS
I
GSS
nAdc
R
DS(on)
V
DS(on)
g
FS
Reverse Recovery Time
(See Figure 14)
t
rr
(I
S
= 15 Adc, V
GS
= 0 Vdc,
dI
S
/dt = 100 A/μs)
t
a
t
b
Q
RR
L
D
L
S
Reverse Recovery Stored Charge
INTERNAL PACKAGE INDUCTANCE
Internal Drain Inductance
(Measured from the drain lead 0.25″ from package to center of die)
Internal Source Inductance
(Measured from the source lead 0.25″ from package to source bond pad)
(1) Pulse Test: Pulse Width
300
μs,
Duty Cycle
2%.
(2) Switching characteristics are independent of operating junction temperature.
http://onsemi.com
3
MTB15N06V
TYPICAL ELECTRICAL CHARACTERISTICS
30
25
20
15
10
5
0
5V
T
J
= 25°C
V
GS
= 10 V
9V
30
8V
7V
I D , DRAIN CURRENT (AMPS)
25
100°C
20
15
10
5
0
25°C
T
J
= − 55°C
V
DS
10 V
6V
0
1
2
3
4
5
6
7
2
4
6
8
10
V
DS
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
V
GS
, GATE−TO−SOURCE VOLTAGE (VOLTS)
Figure 1. On−Region Characteristics
R DS(on) , DRAIN−TO−SOURCE RESISTANCE (OHMS)
Figure 2. Transfer Characteristics
0.2
V
GS
= 10 V
0.13
T
J
= 25°C
0.11
0.14
T
J
= 100°C
0.09
V
GS
= 10 V
25°C
0.08
− 55°C
( )
0.07
15 V
0.02
0
5
10
15
20
25
30
0.05
0
5
10
15
20
25
30
I
D
, DRAIN CURRENT (AMPS)
I
D
, DRAIN CURRENT (AMPS)
Figure 3. On−Resistance versus Drain Current
and Temperature
Figure 4. On−Resistance versus Drain Current
and Gate Voltage
RDS(on) , DRAIN−TO−SOURCE RESISTANCE
(NORMALIZED)
2
V
GS
= 10 V
I
D
= 7.5 A
1.6
I DSS , LEAKAGE (nA)
100
V
GS
= 0 V
1.2
T
J
= 125°C
0.8
0.4
− 50
− 25
0
25
50
75
100
125
150
175
10
0
10
20
30
40
50
60
T
J
, JUNCTION TEMPERATURE (°C)
V
DS
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
Figure 5. On−Resistance Variation with
Temperature
Figure 6. Drain−To−Source Leakage
Current versus Voltage
http://onsemi.com
4
MTB15N06V
POWER MOSFET SWITCHING
Switching behavior is most easily modeled and predicted
by r ec ogniz ing that the powe r MO S FET is charge
controlled. The lengths of various switching intervals (Δt)
are determined by how fast the FET input capacitance can
be charged by current from the generator.
The published capacitance data is difficult to use for
calculating rise and fall because drain−gate capacitance
varies greatly with applied voltage. Accordingly, gate
charge data is used. In most cases, a satisfactory estimate
of average input current (I
G(AV)
) can be made from a
rudimentary analysis of the drive circuit so that
t = Q/I
G(AV)
During the rise and fall time interval when switching a
resistive load, V
GS
remains virtually constant at a level
known as the plateau voltage, V
SGP
. Therefore, rise and fall
times may be approximated by the following:
t
r
= Q
2
x R
G
/(V
GG
V
GSP
)
t
f
= Q
2
x R
G
/V
GSP
where
V
GG
= the gate drive voltage, which varies from zero to V
GG
R
G
= the gate drive resistance
and Q
2
and V
GSP
are read from the gate charge curve.
During the turn−on and turn−off delay times, gate current is
not constant. The simplest calculation uses appropriate
values from the capacitance curves in a standard equation
for voltage change in an RC network. The equations are:
t
d(on)
= R
G
C
iss
In [V
GG
/(V
GG
V
GSP
)]
t
d(off)
= R
G
C
iss
In (V
GG
/V
GSP
)
1500
1200
C, CAPACITANCE (pF)
V
DS
= 0 V
C
iss
V
GS
= 0 V
T
J
= 25°C
The capacitance (C
iss
) is read from the capacitance curve
at a voltage corresponding to the off−state condition when
calculating t
d(on)
and is read at a voltage corresponding to
the on−state when calculating t
d(off)
.
At high switching speeds, parasitic circuit elements
complicate the analysis. The inductance of the MOSFET
source lead, inside the package and in the circuit wiring
which is common to both the drain and gate current paths,
produces a voltage at the source which reduces the gate
drive current. The voltage is determined by Ldi/dt, but since
di/dt is a function of drain current, the mathematical solution
is complex. The MOSFET output capacitance also
complicates the mathematics. And finally, MOSFETs have
finite internal gate resistance which effectively adds to the
resistance of the driving source, but the internal resistance
is difficult to measure and, consequently, is not specified.
The resistive switching time variation versus gate
resistance (Figure 9) shows how typical switching
performance is affected by the parasitic circuit elements. If
the parasitics were not present, the slope of the curves
would maintain a value of unity regardless of the switching
speed. The circuit used to obtain the data is constructed to
minimize common inductance in the drain and gate circuit
loops and is believed readily achievable with board
mounted components. Most power electronic loads are
inductive; the data in the figure is taken with a resistive load,
which approximates an optimally snubbed inductive load.
Power MOSFETs may be safely operated into an inductive
load; however, snubbing reduces switching losses.
900
C
rss
600
C
iss
C
oss
C
rss
0
10
5
V
GS
0
V
DS
5
10
15
20
25
300
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE (VOLTS)
Figure 7. Capacitance Variation
http://onsemi.com
5
查看更多>
【Altera SOC体验之旅】(二)PS2键盘
本帖最后由 Jackzhang1992 于 2015-4-17 11:04 编辑 (二) P...
Jackzhang1992 Altera SoC
【晒经典】VS1003 MP3音频解码电路图
本帖最后由 dontium 于 2015-1-23 12:43 编辑 VS1003概述: ●...
37°男人 模拟与混合信号
牛人总结的PCB抄板步骤和反抄板对策
说起PCB抄板,你可能很惭愧也可能很气愤。不管是你抄板,还是你被别人抄板,这篇关于PCB抄板步...
qwqwqw2088 PCB设计
推荐一款电压传感器
各位朋友,能推荐一款高频电压传感器嘛? 待测量的信号是20KHz 正负400V以内的交流电压 ...
_Mr.Q 模拟电子
数字电视接收方案
我司是一家LED光源投影机集研发、生产、销售为一体的合资公司,现在机型要求加入数字电视接收功能(数字...
zhangxq 移动便携
液晶显示温度计的制作
本帖最后由 jameswangsynnex 于 2015-3-3 20:01 编辑 液晶显示温...
lorant 移动便携
热门器件
热门资源推荐
器件捷径:
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR SS ST SU SV SW SX SY SZ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 TA TB TC TD TE TF TG TH TI TJ TK TL TM TN TO TP TQ TR TS TT TU TV TW TX TY TZ U0 U1 U2 U3 U4 U6 U7 U8 UA UB UC UD UE UF UG UH UI UJ UK UL UM UN UP UQ UR US UT UU UV UW UX UZ V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 VA VB VC VD VE VF VG VH VI VJ VK VL VM VN VO VP VQ VR VS VT VU VV VW VX VY VZ W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 WA WB WC WD WE WF WG WH WI WJ WK WL WM WN WO WP WR WS WT WU WV WW WY X0 X1 X2 X3 X4 X5 X7 X8 X9 XA XB XC XD XE XF XG XH XK XL XM XN XO XP XQ XR XS XT XU XV XW XX XY XZ Y0 Y1 Y2 Y4 Y5 Y6 Y9 YA YB YC YD YE YF YG YH YK YL YM YN YP YQ YR YS YT YX Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z8 ZA ZB ZC ZD ZE ZF ZG ZH ZJ ZL ZM ZN ZP ZR ZS ZT ZU ZV ZW ZX ZY
需要登录后才可以下载。
登录取消