D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
NTP30N06, NTB30N06
Power MOSFET
30 Amps, 60 Volts
N−Channel TO−220 and D
2
PAK
Designed for low voltage, high speed switching applications in
power supplies, converters and power motor controls and bridge
circuits.
Features
http://onsemi.com
•
Pb−Free Packages are Available
Typical Applications
30 AMPERES, 60 VOLTS
R
DS(on)
= 42 mW
D
N−Channel
•
•
•
•
Power Supplies
Converters
Power Motor Controls
Bridge Circuits
G
S
4
Value
60
60
"20
"30
27
15
80
88.2
0.59
−55 to
+175
101
Adc
Apk
W
W/°C
°C
mJ
NTx30N06G
AYWW
R
qJC
T
L
1.7
260
°C/W
°C
1
Gate
2
Drain
NTx30N06
x
A
Y
WW
G
= Device Code
= B or P
= Assembly Location
= Year
= Work Week
= Pb−Free Package
3
Source
1
Gate
Unit
Vdc
Vdc
Vdc
V
GS
V
GS
I
D
I
D
I
DM
P
D
T
J
, T
stg
E
AS
1
TO−220AB
CASE 221A
STYLE 5
2
3
1
2
3
D
2
PAK
CASE 418B
STYLE 2
4
MAXIMUM RATINGS
(T
J
= 25°C unless otherwise noted)
Rating
Drain−to−Source Voltage
Drain−to−Gate Voltage (R
GS
= 10 MW)
Gate−to−Source Voltage
− Continuous
− Non−Repetitive (t
p
v10
ms)
Drain Current
− Continuous @ T
A
= 25°C
− Continuous @ T
A
= 100°C
− Single Pulse (t
p
v10
ms)
Total Power Dissipation @ T
A
= 25°C
Derate above 25°C
Operating and Storage Temperature Range
Single Pulse Drain−to−Source Avalanche
Energy − Starting T
J
= 25°C
(V
DD
= 50 Vdc, V
GS
= 10 Vdc, L = 0.3 mH
I
L(pk)
= 26 A, V
DS
= 60 Vdc)
Thermal Resistance, Junction−to−Case
Maximum Lead Temperature for Soldering
Purposes, 1/8 in from case for 10 seconds
Symbol
V
DSS
V
DGR
MARKING DIAGRAMS
& PIN ASSIGNMENTS
4
Drain
4
Drain
NTx
30N06G
AYWW
2
Drain
3
Source
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 5 of this data sheet.
©
Semiconductor Components Industries, LLC, 2005
1
August, 2005 − Rev. 1
Publication Order Number:
NTP30N06/D
NTP30N06, NTB30N06
ELECTRICAL CHARACTERISTICS
(T
J
= 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Drain−to−Source Breakdown Voltage (Note 1)
(V
GS
= 0 Vdc, I
D
= 250
mAdc)
Temperature Coefficient (Positive)
Zero Gate Voltage Drain Current
(V
DS
= 60 Vdc, V
GS
= 0 Vdc)
(V
DS
= 60 Vdc, V
GS
= 0 Vdc, T
J
= 150°C)
Gate−Body Leakage Current (V
GS
=
±
20 Vdc, V
DS
= 0 Vdc)
ON CHARACTERISTICS
(Note 1)
Gate Threshold Voltage (Note 1)
(V
DS
= V
GS
, I
D
= 250
mAdc)
Threshold Temperature Coefficient (Negative)
Static Drain−to−Source On−Resistance (Note 1)
(V
GS
= 10 Vdc, I
D
= 15 Adc)
Static Drain−to−Source On−Voltage (Note 1)
(V
GS
= 10 Vdc, I
D
= 30 Adc)
(V
GS
= 10 Vdc, I
D
= 15 Adc, T
J
= 150°C)
Forward Transconductance (Note 1) (V
DS
= 7.0 Vdc, I
D
= 15 Adc)
DYNAMIC CHARACTERISTICS
Input Capacitance
Output Capacitance
Transfer Capacitance
SWITCHING CHARACTERISTICS
(Note 2)
Turn−On Delay Time
Rise Time
Turn−Off Delay Time
Fall Time
Gate Charge
(V
DS
= 48 Vdc, I
D
= 30 Adc,
V
GS
= 10 Vdc) (Note 1)
SOURCE−DRAIN DIODE CHARACTERISTICS
Forward On−Voltage
Reverse Recovery Time
(I
S
= 30 Adc, V
GS
= 0 Vdc,
dI
S
/dt = 100 A/ms) (Note 1)
Reverse Recovery Stored Charge
1. Pulse Test: Pulse Width
≤
300
ms,
Duty Cycle
≤
2%.
2. Switching characteristics are independent of operating junction temperatures.
(I
S
= 30 Adc, V
GS
= 0 Vdc) (Note 1)
(I
S
= 30 Adc, V
GS
= 0 Vdc, T
J
= 150°C)
V
SD
t
rr
t
a
t
b
Q
RR
−
−
−
−
−
−
1.03
1.05
52
38
15
0.094
1.15
−
−
−
−
−
mC
Vdc
ns
(V
DD
= 30 Vdc, I
D
= 30 Adc,
V
GS
= 10 Vdc, R
G
= 9.1
W)
(Note 1)
t
d(on)
t
r
t
d(off)
t
f
Q
T
Q
1
Q
2
−
−
−
−
−
−
−
11
36
24
31
23.4
5.1
11
25
80
50
60
46
−
−
nC
ns
(V
DS
= 25 Vdc, V
GS
= 0 Vdc,
f = 1.0 MHz)
C
iss
C
oss
C
rss
−
−
−
850
250
68
1200
350
100
pF
V
GS(th)
2.0
−
R
DS(on)
−
V
DS(on)
−
−
g
FS
−
1.1
0.98
16
1.5
−
−
mhos
35
42
Vdc
3.05
7.3
4.0
−
Vdc
mV/°C
mW
V
(BR)DSS
60
−
I
DSS
−
−
I
GSS
−
−
−
−
1.0
10
±100
nAdc
71.1
70
−
−
Vdc
mV/°C
mAdc
Symbol
Min
Typ
Max
Unit
http://onsemi.com
2
NTP30N06, NTB30N06
60
V
GS
= 10 V
I
D
, DRAIN CURRENT (AMPS)
50
40
30
20
10
0
0
1
2
3
4
5
V
DS
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
6
9V
7V
6.5 V
6V
5.5 V
5V
4.5 V
0
2
I
D
, DRAIN CURRENT (AMPS)
8V
60
50
40
30
20
10
T
J
= 100°C
T
J
= −55°C
10
V
DS
≥
10 V
T
J
= 25°C
4
8
6
V
GS
, GATE−TO−SOURCE VOLTAGE (VOLTS)
Figure 1. On−Region Characteristics
R
DS(on)
, DRAIN−TO−SOURCE RESISTANCE (W)
R
DS(on)
, DRAIN−TO−SOURCE RESISTANCE (W)
Figure 2. Transfer Characteristics
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0
0
10
20
30
40
50
60
T
J
= 25°C
T
J
= −55°C
T
J
= 100°C
V
GS
= 10 V
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0
0
10
20
T
J
= −55°C
T
J
= 100°C
T
J
= 25°C
V
GS
= 15 V
30
40
50
60
I
D
, DRAIN CURRENT (AMPS)
I
D
, DRAIN CURRENT (AMPS)
Figure 3. On−Resistance versus
Gate−to−Source Voltage
R
DS(on)
, DRAIN−TO−SOURCE RESISTANCE
(NORMALIZED)
2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
−50 −25
1
0
25
50
75
100
125
150
175
0
I
D
= 15 A
V
GS
= 10 V
10000
Figure 4. On−Resistance versus Drain Current
and Gate Voltage
V
GS
= 0 V
I
DSS
, LEAKAGE (nA)
1000
T
J
= 150°C
100
10
T
J
= 100°C
10
20
30
40
50
60
T
J
, JUNCTION TEMPERATURE (°C)
V
DS
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
Figure 5. On−Resistance Variation with
Temperature
Figure 6. Drain−to−Source Leakage Current
versus Voltage
http://onsemi.com
3
NTP30N06, NTB30N06
V
GS
, GATE−TO−SOURCE VOLTAGE (VOLTS)
2400
2000
C, CAPACITANCE (pF)
1600
1200
V
DS
= 0 V
V
GS
= 0 V
12
10
8
Q
1
6
4
2
0
0
I
D
= 30 A
T
J
= 25°C
4
8
12
16
20
24
Q
2
Q
T
V
GS
T
J
= 25°C
C
iss
C
rss
800
400
0
10
C
iss
C
oss
C
rss
5 V
GS
0 V
DS
5
10
15
20
25
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE
(VOLTS)
Q
g
, TOTAL GATE CHARGE (nC)
Figure 7. Capacitance Variation
1000
I
S
, SOURCE CURRENT (AMPS)
V
DS
= 30 V
I
D
= 30 A
V
GS
= 10 V
t, TIME (ns)
100
t
r
t
d(off)
10
t
d(on)
t
f
32
Figure 8. Gate−to−Source and
Drain−to−Source Voltage versus Total Charge
V
GS
= 0 V
T
J
= 25°C
24
16
8
1
1
10
R
G
, GATE RESISTANCE (W)
100
0
0.6
0.68
0.76
0.84
0.92
1
1.08
1.16
V
SD
, SOURCE−TO−DRAIN VOLTAGE (VOLTS)
Figure 9. Resistive Switching Time Variation
versus Gate Resistance
1000
I
D
, DRAIN CURRENT (AMPS)
V
GS
= 20 V
SINGLE PULSE
T
C
= 25°C
E
AS
, SINGLE PULSE DRAIN−TO−SOURCE
AVALANCHE ENERGY (mJ)
120
Figure 10. Diode Forward Voltage versus
Current
I
D
= 26 A
100
80
60
40
20
0
100
10
10 ms
1 ms
100
ms
10
ms
R
DS(on)
Limit
Thermal Limit
Package Limit
dc
1
0.1
0.1
1
10
100
25
50
75
100
125
150
175
V
DS
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
T
J
, STARTING JUNCTION TEMPERATURE (°C)
Figure 11. Maximum Rated Forward Biased
Safe Operating Area
Figure 12. Maximum Avalanche Energy versus
Starting Junction Temperature
http://onsemi.com
4