D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
NTD70N03R
Power MOSFET
72 A, 25 V, N-Channel DPAK
Features
•
•
•
•
•
Planar HD3e Process for Fast Switching Performance
Low R
DS(on)
to Minimize Conduction Loss
Low C
ISS
to Minimize Driver Loss
Low Gate Charge
Pb-Free Packages are Available
http://onsemi.com
V
(BR)DSS
25 V
R
DS(on)
TYP
5.6 mW
I
D
MAX
72 A
MAXIMUM RATINGS
(T
J
= 25°C Unless otherwise specified)
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage - Continuous
Thermal Resistance - Junction-to-Case
Total Power Dissipation @ T
C
= 25°C
Drain Current
- Continuous @ T
C
= 25°C, Chip
- Continuous @ T
C
= 25°C, Limited by Package
- Continuous @ T
A
= 25°C, Limited by Wires
- Single Pulse (t
p
= 10
ms)
Thermal Resistance - Junction-to-Ambient
(Note1)
Total Power Dissipation @ T
A
= 25°C
Drain Current - Continuous @ T
A
= 25°C
Thermal Resistance - Junction-to-Ambient
(Note2)
Total Power Dissipation @ T
A
= 25°C
Drain Current - Continuous @ T
A
= 25°C
Operating and Storage Temperature Range
Single Pulse Drain-to-Source Avalanche
Energy - Starting T
J
= 25°C
(V
DD
= 30 V
dc
, V
GS
= 10 V
dc
, I
L
= 12 A
pk
,
L = 1 mH, R
G
= 25
W)
Maximum Lead Temperature for Soldering
Purposes, 1/8″ from Case for 10 s
Symbol
V
DSS
V
GS
R
qJC
P
D
I
D
I
D
I
D
I
DM
R
qJA
P
D
I
D
R
qJA
P
D
I
D
T
J
, T
stg
E
AS
Value
25
±20
2.4
62.5
72.0
62.8
32
140
80
1.87
12.0
110
1.36
10.0
-55 to
175
71.7
Unit
V
dc
V
dc
°C/W
W
A
A
A
A
°C/W
W
A
°C/W
W
A
°C
mJ
4
1 2
3
DPAK
CASE 369AA
STYLE 2
G
N-Channel
D
S
MARKING DIAGRAMS
4
Drain
YWW
T70
N03G
2
1
3
Drain
Gate
Source
4
Drain
YWW
T70
N03G
1
3
DPAK
CASE 369D
STYLE 2
2
1 2 3
Gate Drain Source
= Device Code
= Year
= Work Week
= Pb-Free Package
70N03
Y
WW
G
4
Publication Order Number:
NTD70N03R/D
T
L
260
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. When surface mounted to an FR4 board using 0.5 sq. in. pad size.
2. When surface mounted to an FR4 board using minimum recommended
pad size.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 5 of this data sheet.
©
Semiconductor Components Industries, LLC, 2008
1
March, 2008 - Rev. 10
NTD70N03R
ELECTRICAL CHARACTERISTICS
(T
J
= 25°C Unless otherwise specified)
Characteristics
OFF CHARACTERISTICS
Drain-to-Source Breakdown Voltage (Note 3)
(V
GS
= 0 V
dc
, I
D
= 250
mA
dc
)
Temperature Coefficient (Positive)
Zero Gate Voltage Drain Current
(V
DS
= 20 V
dc
, V
GS
= 0 V
dc
)
(V
DS
= 20 V
dc
, V
GS
= 0 V
dc
, T
J
= 150°C)
Gate-Body Leakage Current
(V
GS
=
±20
V
dc
, V
DS
= 0 V
dc
)
ON CHARACTERISTICS
(Note 3)
Gate Threshold Voltage (Note 3)
(V
DS
= V
GS
, I
D
= 250
mA
dc
)
Threshold Temperature Coefficient (Negative)
Static Drain-to-Source On-Resistance (Note 3)
(V
GS
= 4.5 V
dc
, I
D
= 20 A
dc
)
(V
GS
= 10 V
dc
, I
D
= 20 A
dc
)
Forward Transconductance (Note 3)
(V
DS
= 10 V
dc
, I
D
= 15 A
dc
)
DYNAMIC CHARACTERISTICS
Input Capacitance
Output Capacitance
Transfer Capacitance
SWITCHING CHARACTERISTICS
(Note 4)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Gate Charge
(V
GS
= 5 V
dc
, I
D
= 36 A
dc
,
V
DS
= 10 V
dc
) (Note 3)
SOURCE-DRAIN DIODE CHARACTERISTICS
Forward On-Voltage
(I
S
= 20 A
dc
, V
GS
= 0 V
dc
) (Note 3)
(I
S
= 20 A
dc
, V
GS
= 0 V
dc
, T
J
= 125°C)
V
SD
-
-
t
rr
(I
S
= 36 A
dc
, V
GS
= 0 V
dc
,
dI
S
/dt = 100 A/ms) (Note 3)
Reverse Recovery Stored
Charge
t
a
t
b
Q
RR
-
-
-
-
0.86
0.73
27.9
14.8
13.1
19
1.2
-
-
-
-
-
nC
ns
V
dc
(V
GS
= 10 V
dc
, V
DD
= 10 V
dc
,
I
D
= 36 A
dc
, R
G
= 3
W)
t
d(on)
t
r
t
d(off)
t
f
Q
T
Q
GS
Q
DS
-
-
-
-
-
-
-
6.9
1.3
18.4
5.5
13.2
3.3
6.5
-
-
-
-
-
-
-
nC
ns
(V
DS
= 20 V
dc
, V
GS
= 0 V,
f = 1 MHz)
C
ISS
C
OSS
C
RSS
-
-
-
1333
600
218
-
-
-
pF
V
GS(th)
1.0
-
R
DS(on)
-
-
g
FS
-
27
-
8.1
5.6
13
8.0
Mhos
1.5
4.0
2.0
-
V
dc
mV/°C
mW
V
(br)DSS
25
-
I
DSS
-
-
I
GSS
-
-
-
-
1.5
10
±100
28
20.5
-
-
V
dc
mV/°C
mA
dc
Symbol
Min
Typ
Max
Unit
nA
dc
Reverse Recovery Time
3. Pulse Test: Pulse Width = 300
ms,
Duty Cycle = 2%.
4. Switching characteristics are independent of operating junction temperatures.
http://onsemi.com
2
NTD70N03R
TYPICAL PERFORMANCE CURVES
(T
J
= 25°C unless otherwise noted)
175
I
D
, DRAIN CURRENT (AMPS)
150
125
100
75
50
25
0
0
2
4
6
8
4.2 V
4V
3.8 V
3.6 V
3.4 V
3.2 V
3V
2.8 V
2.6 V
10 V
8V
6V
5V
4.5 V
T
J
= 25°C
I
D
, DRAIN CURRENT (AMPS)
150
V
DS
≥
10 V
125
100
75
50
25
0
0
2
T
J
= 25°C
T
J
= 175°C
T
J
= -55°C
4
6
8
2.4 V
10
V
DS
, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
V
GS
, GATE-TO-SOURCE VOLTAGE (VOLTS)
Figure 1. On-Region Characteristics
R
DS(on)
, DRAIN-TO-SOURCE RESISTANCE (W)
R
DS(on)
, DRAIN-TO-SOURCE RESISTANCE (W)
Figure 2. Transfer Characteristics
0.05
I
D
= 72 A
T
J
= 25°C
0.04
0.016
V
GS
= 10 V
0.012
T
J
= 175°C
0.03
0.008
T
J
= 25°C
0.02
0.004
0.01
0
2
4
6
8
10
V
GS
, GATE-TO-SOURCE VOLTAGE (VOLTS)
T
J
= -55°C
0
10
30
50
70
90
110
130
150
I
D
, DRAIN CURRENT (AMPS)
Figure 3. On-Resistance versus
Gate-to-Source Voltage
R
DS(on)
, DRAIN-TO-SOURCE RESISTANCE
(NORMALIZED)
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
-50 -25
I
D
= 36 A
V
GS
= 10 V
1,000,000
Figure 4. On-Resistance versus Drain Current
and Gate Voltage
V
GS
= 0 V
100,000
I
DSS
, LEAKAGE (nA)
T
J
= 175°C
10,000
1000
T
J
= 100°C
100
10
0
25
50
75
100
125
150
175
0
5
10
15
20
25
T
J
, JUNCTION TEMPERATURE (°C)
V
DS
, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
Figure 5. On-Resistance Variation with
Temperature
Figure 6. Drain-to-Source Leakage Current
versus Voltage
http://onsemi.com
3
NTD70N03R
V
DS
= 0 V
C
ISS
C
RSS
2000
1500
1000
500
0
10
5
V
GS
0
V
DS
5
10
15
20
C
ISS
V
GS
= 0 V
V
GS,
GATE-TO-SOURCE VOLTAGE (VOLTS)
3000
2500
C, CAPACITANCE (pF)
10
QT
8
V
DD
= 10 V
Q
GS
T
J
= 25°C
6
Q
GD
4
C
OSS
C
RSS
2
0
0
I
D
= 36 A
T
J
= 25°C
10
20
Q
G
, TOTAL GATE CHARGE (nC)
30
GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)
Figure 7. Capacitance Variation
Figure 8. Gate-To-Source and Drain-To-Source
Voltage versus Total Charge
1000
IS, SOURCE CURRENT (AMPS)
80
70
60
50
40
30
20
10
0
0.4
0.6
0.8
1.0
1.2
1.4
1.6
V
GS
= 0 V
T
J
= 25°C
t, TIME (ns)
100
t
d(off)
10
t
d(on)
t
f
t
r
1
V
DS
= 10 V
I
D
= 36 A
V
GS
= 10 V
100
1
10
R
G
, GATE RESISTANCE (OHMS)
V
SD
, SOURCE-TO-DRAIN VOLTAGE (VOLTS)
Figure 9. Resistive Switching Time
Variation versus Gate Resistance
Figure 10. Diode Forward Voltage versus Current
100
I D, DRAIN CURRENT (AMPS)
10
ms
120
10
V
GS
= 20 V
SINGLE PULSE
T
C
= 25°C
1 ms
10 ms
Ider (%)
40
0
0
100
ms
80
R
DS(on)
LIMIT
THERMAL LIMIT
PACKAGE LIMIT
1
0.1
dc
1
10
100
V
DS
, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
50
100
Tmb (°C)
150
200
Figure 11. Maximum Rated Forward Biased
Safe Operating Area
Figure 12. Normalized Continuous Drain Current
as a function of Mounting Base Temperature
http://onsemi.com
4