首页 > 器件类别 > 分立半导体 > 晶体管

NTP13N10G

13A, 100V, 0.165ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB, LEAD FREE, CASE 221A-09, 3 PIN

器件类别:分立半导体    晶体管   

厂商名称:Rochester Electronics

厂商官网:https://www.rocelec.com/

器件标准:  

下载文档
NTP13N10G 在线购买

供应商:

器件:NTP13N10G

价格:-

最低购买:-

库存:点击查看

点击购买

器件参数
参数名称
属性值
是否无铅
不含铅
是否Rohs认证
符合
厂商名称
Rochester Electronics
零件包装代码
TO-220AB
包装说明
LEAD FREE, CASE 221A-09, 3 PIN
针数
3
制造商包装代码
CASE 221A-09
Reach Compliance Code
unknown
雪崩能效等级(Eas)
85 mJ
外壳连接
DRAIN
配置
SINGLE WITH BUILT-IN DIODE
最小漏源击穿电压
100 V
最大漏极电流 (ID)
13 A
最大漏源导通电阻
0.165 Ω
FET 技术
METAL-OXIDE SEMICONDUCTOR
JEDEC-95代码
TO-220AB
JESD-30 代码
R-PSFM-T3
JESD-609代码
e3
元件数量
1
端子数量
3
工作模式
ENHANCEMENT MODE
封装主体材料
PLASTIC/EPOXY
封装形状
RECTANGULAR
封装形式
FLANGE MOUNT
峰值回流温度(摄氏度)
260
极性/信道类型
N-CHANNEL
最大脉冲漏极电流 (IDM)
39 A
认证状态
COMMERCIAL
表面贴装
NO
端子面层
MATTE TIN
端子形式
THROUGH-HOLE
端子位置
SINGLE
处于峰值回流温度下的最长时间
40
晶体管应用
SWITCHING
晶体管元件材料
SILICON
文档预览
D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
NTP13N10
Preferred Device
Power MOSFET
13 A, 100 V, N−Channel
Enhancement−Mode TO−220
Features
Source−to−Drain Diode Recovery Time Comparable to a Discrete
Fast Recovery Diode
Avalanche Energy Specified
I
DSS
and R
DS(on)
Specified at Elevated Temperature
Pb−Free Package is Available
Typical Applications
V
DSS
100 V
http://onsemi.com
R
DS(ON)
TYP
165 mΩ @ 10 V
N−Channel
D
I
D
MAX
13 A
PWM Motor Controls
Power Supplies
Converters
MAXIMUM RATINGS
(T
C
= 25°C unless otherwise noted)
Rating
Drain−to−Source Voltage
Drain−to−Source Voltage (R
GS
= 1.0 MΩ)
Gate−to−Source Voltage
Continuous
Non−Repetitive (t
p
v10
ms)
Drain Current
Continuous @ T
A
25°C
Continuous @ T
A
100°C
Pulsed (Note 1)
Total Power Dissipation @ T
A
= 25°C
Derate above 25°C
Operating and Storage Temperature Range
Single Drain−to−Source Avalanche Energy
Starting T
J
= 25°C
(V
DD
= 50 Vdc, V
GS
= 10 Vdc,
I
L
(pk) = 13 A, L = 1.0 mH, R
G
= 25
Ω)
Thermal Resistance
Junction−to−Case
Maximum Lead Temperature for Soldering
Purposes, 1/8″ from case for 10 seconds
Symbol
V
DSS
V
DGR
V
GS
V
GSM
I
D
I
D
Value
100
100
"20
"30
Adc
13
8.0
39
64.7
0.43
−55
to
+175
W
W/°C
°C
mJ
85
°C/W
°C
13N10
A
Y
WW
1
2
3
4
Unit
Vdc
Vdc
Vdc
G
S
MARKING DIAGRAM
& PIN ASSIGNMENT
4
Drain
I
DM
P
D
T
J
, T
stg
E
AS
TO−220AB
CASE 221A
STYLE 5
1
Gate
13N10
AYWW
3
Source
2
Drain
R
θJC
T
L
2.32
260
= Device Code
= Assembly Location
= Year
= Work Week
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. Pulse Test: Pulse Width = 10
ms,
Duty Cycle = 2%.
ORDERING INFORMATION
Device
NTP13N10
NTP13N10G
Package
TO−220AB
TO−220AB
(Pb−Free)
Shipping
50 Units/Rail
50 Units/Rail
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
Preferred
devices are recommended choices for future use
and best overall value.
©
Semiconductor Components Industries, LLC, 2006
August, 2006
Rev. 6
1
Publication Order Number:
NTP13N10/D
NTP13N10
ELECTRICAL CHARACTERISTICS
(T
C
= 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Drain−to−Source Breakdown Voltage
(V
GS
= 0 Vdc, I
D
= 250
mAdc)
Temperature Coefficient (Positive)
Zero Gate Voltage Collector Current
(V
GS
= 0 Vdc, V
DS
= 100 Vdc, T
J
= 25°C)
(V
GS
= 0 Vdc, V
DS
= 100 Vdc, T
J
= 125°C)
Gate−Body Leakage Current (V
GS
=
±
20 Vdc, V
DS
= 0)
ON CHARACTERISTICS
Gate Threshold Voltage
V
DS
= V
GS,
I
D
= 250
mAdc)
Temperature Coefficient (Negative)
Static Drain−to−Source On−State Resistance
(V
GS
= 10 Vdc, I
D
= 6.5 Adc)
(V
GS
= 10 Vdc, I
D
= 6.5 Adc, T
J
= 125°C)
Drain−to−Source On−Voltage
(V
GS
= 10 Vdc, I
D
= 13 Adc)
Forward Transconductance (V
DS
= 15 Vdc, I
D
= 6.5 Adc)
DYNAMIC CHARACTERISTICS
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
SWITCHING CHARACTERISTICS
(Notes 2 & 3)
Turn−On Delay Time
Rise Time
Turn−Off Delay Time
Fall Time
Gate Charge
(V
DS
= 80 Vdc, I
D
= 13 Adc,
V
GS
= 10 Vdc)
BODY−DRAIN DIODE RATINGS
(Note 2)
Forward On−Voltage
Reverse Recovery Time
(I
S
= 13 Adc, V
GS
= 0 Vdc,
dI
S
/dt = 100 A/ms)
Reverse Recovery Stored Charge
2. Pulse Test: Pulse Width = 300
ms
max, Duty Cycle = 2%.
3. Switching characteristics are independent of operating junction temperature.
(I
S
= 13 Adc, V
GS
= 0 Vdc)
(I
S
= 13 Adc, V
GS
= 0 Vdc, T
J
= 125°C)
V
SD
t
rr
t
a
t
b
Q
RR
0.98
0.88
85
60
28
0.3
1.3
mC
Vdc
ns
(V
DD
= 80 Vdc, I
D
= 13 Adc,
V
GS
= 10 Vdc, R
G
= 9.1
Ω)
t
d(on)
t
r
t
d(off)
t
f
Q
tot
Q
gs
Q
gd
11
40
20
36
14
3.0
7.0
20
80
40
70
20
nC
ns
(V
DS
= 25 Vdc, V
GS
= 0 Vdc,
f = 1.0 MHz)
C
iss
C
oss
C
rss
390
115
35
550
160
70
pF
V
GS(th)
Vdc
2.0
3.2
−7.6
0.130
0.250
1.82
6.0
4.0
0.165
0.400
2.34
mhos
mV/°C
Ω
V
(BR)DSS
Vdc
100
147
5.0
50
±
100
mV/°C
mAdc
Symbol
Min
Typ
Max
Unit
I
DSS
I
GSS
nAdc
R
DS(on)
V
DS(on)
g
FS
Vdc
http://onsemi.com
2
NTP13N10
26
24
22
20
18
16
14
12
10
8
6
4
2
0
V
GS
= 10 V
9V
8V
7.5 V
6V
5.5 V
5V
4.5 V
0
8
9
1
2
3
4
5
6
7
V
DS
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
10
7V
6.5 V
T
J
= 25°C
I
D
, DRAIN CURRENT (AMPS)
26
24
22
20
18
16
14
12
10
8
6
4
2
0
V
DS
10 V
I
D
, DRAIN CURRENT (AMPS)
T
J
= 25°C
T
J
= 100°C
0
T
J
=
−55°C
10
1
2
3
4
5
6
7
8
9
V
GS
, GATE−TO−SOURCE VOLTAGE (VOLTS)
Figure 1. On−Region Characteristics
R
DS(on)
, DRAIN−TO−SOURCE RESISTANCE (W)
R
DS(on)
, DRAIN−TO−SOURCE RESISTANCE (W)
Figure 2. Transfer Characteristics
0.5
0.4
0.3
0.2
0.1
0
V
GS
= 10 V
0.2
T
J
= 25°C
0.175
T
J
= 100°C
0.15
V
GS
= 10 V
V
GS
= 15 V
T
J
= 25°C
T
J
=
−55°C
0.125
0
2
4
6 8 10 12 14 16 18 20 22 24
I
D
, DRAIN CURRENT (AMPS)
26
0.1
0
2
4
6 8 10 12 14 16 18 20 22 24 26
I
D
, DRAIN CURRENT (AMPS)
Figure 3. On−Resistance versus Drain Current
and Temperature
R
DS(on),
DRAIN−TO−SOURCE RESISTANCE (NORMALIZED)
Figure 4. On−Resistance versus Drain Current
and Gate Voltage
3
2.5
2
1.5
1
0.5
0
−50 −25
0
25
50
75 100 125 150
T
J
, JUNCTION TEMPERATURE (°C)
175
I
D
= 6.5 A
V
GS
= 10 V
10,000
V
GS
= 0 V
I
DSS
, LEAKAGE (nA)
1000
T
J
= 150°C
100
T
J
= 100°C
10
20
30
60
70
80
90 100
40
50
V
DS
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
Figure 5. On−Resistance Variation with
Temperature
Figure 6. Drain−to−Source Leakage Current
versus Voltage
http://onsemi.com
3
NTP13N10
POWER MOSFET SWITCHING
Switching behavior is most easily modeled and predicted
by recognizing that the power MOSFET is charge
controlled. The lengths of various switching intervals (Δt)
are determined by how fast the FET input capacitance can
be charged by current from the generator.
The published capacitance data is difficult to use for
calculating rise and fall because drain−gate capacitance
varies greatly with applied voltage. Accordingly, gate
charge data is used. In most cases, a satisfactory estimate of
average input current (I
G(AV)
) can be made from a
rudimentary analysis of the drive circuit so that
t = Q/I
G(AV)
During the rise and fall time interval when switching a
resistive load, V
GS
remains virtually constant at a level
known as the plateau voltage, V
SGP
. Therefore, rise and fall
times may be approximated by the following:
t
r
= Q
2
x R
G
/(V
GG
V
GSP
)
t
f
= Q
2
x R
G
/V
GSP
where
V
GG
= the gate drive voltage, which varies from zero to V
GG
R
G
= the gate drive resistance
and Q
2
and V
GSP
are read from the gate charge curve.
During the turn−on and turn−off delay times, gate current is
not constant. The simplest calculation uses appropriate
values from the capacitance curves in a standard equation for
voltage change in an RC network. The equations are:
t
d(on)
= R
G
C
iss
In [V
GG
/(V
GG
V
GSP
)]
t
d(off)
= R
G
C
iss
In (V
GG
/V
GSP
)
1000
800
600
C
rss
400
200
0
10
C
rss
5
V
GS
0
V
DS
5
10
15
20
25
C
iss
The capacitance (C
iss
) is read from the capacitance curve at
a voltage corresponding to the off−state condition when
calculating t
d(on)
and is read at a voltage corresponding to the
on−state when calculating t
d(off)
.
At high switching speeds, parasitic circuit elements
complicate the analysis. The inductance of the MOSFET
source lead, inside the package and in the circuit wiring
which is common to both the drain and gate current paths,
produces a voltage at the source which reduces the gate drive
current. The voltage is determined by Ldi/dt, but since di/dt
is a function of drain current, the mathematical solution is
complex. The MOSFET output capacitance also
complicates the mathematics. And finally, MOSFETs have
finite internal gate resistance which effectively adds to the
resistance of the driving source, but the internal resistance
is difficult to measure and, consequently, is not specified.
The resistive switching time variation versus gate
resistance (Figure 9) shows how typical switching
performance is affected by the parasitic circuit elements. If
the parasitics were not present, the slope of the curves would
maintain a value of unity regardless of the switching speed.
The circuit used to obtain the data is constructed to minimize
common inductance in the drain and gate circuit loops and
is believed readily achievable with board mounted
components. Most power electronic loads are inductive; the
data in the figure is taken with a resistive load, which
approximates an optimally snubbed inductive load. Power
MOSFETs may be safely operated into an inductive load;
however, snubbing reduces switching losses.
V
DS
= 0 V
C
iss
V
GS
= 0 V
T
J
= 25°C
C, CAPACITANCE (pF)
C
oss
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE
(VOLTS)
Figure 7. Capacitance Variation
http://onsemi.com
4
查看更多>
参数对比
与NTP13N10G相近的元器件有:NTP13N10。描述及对比如下:
型号 NTP13N10G NTP13N10
描述 13A, 100V, 0.165ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB, LEAD FREE, CASE 221A-09, 3 PIN 13A, 100V, 0.165ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB, CASE 221A-09, 3 PIN
是否无铅 不含铅 不含铅
是否Rohs认证 符合 不符合
厂商名称 Rochester Electronics Rochester Electronics
零件包装代码 TO-220AB TO-220AB
包装说明 LEAD FREE, CASE 221A-09, 3 PIN CASE 221A-09, 3 PIN
针数 3 3
制造商包装代码 CASE 221A-09 CASE 221A-09
Reach Compliance Code unknown unknown
雪崩能效等级(Eas) 85 mJ 85 mJ
外壳连接 DRAIN DRAIN
配置 SINGLE WITH BUILT-IN DIODE SINGLE WITH BUILT-IN DIODE
最小漏源击穿电压 100 V 100 V
最大漏极电流 (ID) 13 A 13 A
最大漏源导通电阻 0.165 Ω 0.165 Ω
FET 技术 METAL-OXIDE SEMICONDUCTOR METAL-OXIDE SEMICONDUCTOR
JEDEC-95代码 TO-220AB TO-220AB
JESD-30 代码 R-PSFM-T3 R-PSFM-T3
JESD-609代码 e3 e0
元件数量 1 1
端子数量 3 3
工作模式 ENHANCEMENT MODE ENHANCEMENT MODE
封装主体材料 PLASTIC/EPOXY PLASTIC/EPOXY
封装形状 RECTANGULAR RECTANGULAR
封装形式 FLANGE MOUNT FLANGE MOUNT
峰值回流温度(摄氏度) 260 240
极性/信道类型 N-CHANNEL N-CHANNEL
最大脉冲漏极电流 (IDM) 39 A 39 A
认证状态 COMMERCIAL COMMERCIAL
表面贴装 NO NO
端子面层 MATTE TIN TIN LEAD
端子形式 THROUGH-HOLE THROUGH-HOLE
端子位置 SINGLE SINGLE
处于峰值回流温度下的最长时间 40 30
晶体管应用 SWITCHING SWITCHING
晶体管元件材料 SILICON SILICON
示波器相关术语介绍(下)​
示波器性能相关术语 接下去要讲的一些术语,可能会当你和朋友们讨论示波器性能的时候用到,理解这...
Micsig麦科信 综合技术交流
创意安全领导灯
火灾来临时,越快逃离火场就越能够减少伤亡的几率,因此,一款好的安全领导灯就显得至关重要。不过传统的领...
xyh_521 创意市集
老问题-下载失败
下载程序失败,有以下一系列提示: FATAL ERROR Failed to write memor...
chenyugang222 微控制器 MCU
以太网流量控制
以太网流量控制 今天在测试DPDK性能的时候,发现发包工具的发包速率无法提升上去,千兆网卡设...
至芯科技FPGA大牛 FPGA/CPLD
wince下实现flash播放
有前辈实现过吗?如何是自己做的最好是!源代码好复杂压根不知道怎么弄.望前辈指导一下 wince下实现...
logics WindowsCE
【Silicon Labs BG22-EK4108A 蓝牙开发评测】三、蓝牙协议测试之APP点灯和按键检测
1.使用蓝牙协议测试之APP点灯和按键检测,采用官方提供的Demo总是在仿真的时候跑飞,也是好不容...
lang518899 Silicon Labs 开发套件评测专区
热门器件
热门资源推荐
器件捷径:
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 SA SB SC SD SE SF SG SH SI SJ SK SL SM SN SO SP SQ SR SS ST SU SV SW SX SY SZ T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 TA TB TC TD TE TF TG TH TI TJ TK TL TM TN TO TP TQ TR TS TT TU TV TW TX TY TZ U0 U1 U2 U3 U4 U6 U7 U8 UA UB UC UD UE UF UG UH UI UJ UK UL UM UN UP UQ UR US UT UU UV UW UX UZ V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 VA VB VC VD VE VF VG VH VI VJ VK VL VM VN VO VP VQ VR VS VT VU VV VW VX VY VZ W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 WA WB WC WD WE WF WG WH WI WJ WK WL WM WN WO WP WR WS WT WU WV WW WY X0 X1 X2 X3 X4 X5 X7 X8 X9 XA XB XC XD XE XF XG XH XK XL XM XN XO XP XQ XR XS XT XU XV XW XX XY XZ Y0 Y1 Y2 Y4 Y5 Y6 Y9 YA YB YC YD YE YF YG YH YK YL YM YN YP YQ YR YS YT YX Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z8 ZA ZB ZC ZD ZE ZF ZG ZH ZJ ZL ZM ZN ZP ZR ZS ZT ZU ZV ZW ZX ZY
需要登录后才可以下载。
登录取消