D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
Advanced Power MOSFET
FEATURES
n
Avalanche Rugged Technology
n
Rugged Gate Oxide Technology
n
Lower Input Capacitance
n
Improved Gate Charge
o
n
175 C Opereting Temperature
n
Extended Safe Operating Area
n
Lower Leakage Current : -10
µA
(Max.) @ V
DS
= -60V
n
Low R
DS(ON)
: 0.206
Ω
(Typ.)
SFP9Z24
BV
DSS
= -60 V
R
DS(on)
= 0.28
Ω
I
D
= -9.7 A
TO-220
1
2
3
1.Gate 2. Drain 3. Source
Absolute Maximum Ratings
Symbol
V
DSS
I
D
I
DM
V
GS
E
AS
I
AR
E
AR
dv/dt
P
D
T
J
, T
STG
T
L
Characteristic
Drain-to-Source Voltage
Continuous Drain Current (T
C
=25 C)
Continuous Drain Current (T
C
=100 C)
Drain Current-Pulsed
Gate-to-Source Voltage
Single Pulsed Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Total Power Dissipation (T
C
=25 C)
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Maximum Lead Temp. for Soldering
Purposes, 1/8” from case for 5-seconds
o
2
O
1
O
1
O
3
O
o
o
Value
-60
-9.7
-6.8
1
O
Units
V
A
A
V
mJ
A
mJ
V/ns
W
W/ C
o
-40
±30
161
-9.7
4.9
-5.5
49
0.33
- 55 to +175
o
C
300
Thermal Resistance
Symbol
R
θJC
R
θCS
R
θJA
Characteristic
Junction-to-Case
Case-to-Sink
Junction-to-Ambient
Typ.
--
0.5
--
Max.
3.06
--
62.5
o
Units
C/W
Rev. C
SFP9Z24
Electrical Characteristics
(T
C
=25
o
C unless otherwise specified)
Symbol
BV
DSS
∆BV/∆T
J
V
GS(th)
I
GSS
I
DSS
R
DS(on)
g
fs
C
iss
C
oss
C
rss
t
d(on)
t
r
t
d(off)
t
f
Q
g
Q
gs
Q
gd
Characteristic
Drain-Source Breakdown Voltage
Breakdown Voltage Temp. Coeff.
Gate Threshold Voltage
Gate-Source Leakage , Forward
Gate-Source Leakage , Reverse
Drain-to-Source Leakage Current
Static Drain-Source
On-State Resistance
Forward Transconductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Gate Charge
Gate-Source Charge
Gate-Drain(“Miller”) Charge
Min. Typ. Max. Units
-60
--
-2.0
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-0.04
--
--
--
--
--
--
4.1
465
140
40
11
21
29
20
15
2.9
6.0
--
--
-4.0
-100
100
-10
-100
0.28
--
600
215
60
30
50
65
50
19
--
--
nC
ns
pF
µA
Ω
S
V
o
P-CHANNEL
POWER MOSFET
Test Condition
V
GS
=0V,I
D
=-250µA
See Fig 7
V
DS
=-5V,I
D
=-250µA
V
GS
=-20V
V
GS
=20V
V
DS
=-60V
V
DS
=-48V,T
C
=150 C
V
GS
=-10V,I
D
=-4.9A
V
DS
=-30V,I
D
=-4.9A
4
O
4
O
o
V/ C I
D
=-250µA
V
nA
V
GS
=0V,V
DS
=-25V,f =1MHz
See Fig 5
V
DD
=-30V,I
D
=-9.7A,
R
G
=18
Ω
See Fig 13
V
DS
=-48V,V
GS
=-10V,
I
D
=-9.7A
See Fig 6 & Fig 12
4
5
OO
4
5
OO
Source-Drain Diode Ratings and Characteristics
Symbol
I
S
I
SM
V
SD
t
rr
Q
rr
Characteristic
Continuous Source Current
Pulsed-Source Current
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
1
O
4
O
Min. Typ. Max. Units
--
--
--
--
--
--
--
--
80
0.22
-9.7
-40
-3.8
--
--
A
V
ns
µC
Test Condition
Integral reverse pn-diode
in the MOSFET
T
J
=25 C,I
S
=-9.7A,V
GS
=0V
T
J
=25 C,I
F
=-9.7A
di
F
/dt=100A/µs
4
O
o
o
Notes ;
1
O
Repetitive Rating : Pulse Width Limited by Maximum Junction Temperature
2
L=2.0mH, I =-9.7A, V =-25V, R =27Ω
*
, Starting T =25
o
C
O
AS
DD
G
J
3
_
_
_
O
I
SD
<
-9.7A, di/dt
<
250A/µs, V
DD
<
BV
DSS
, Starting T
J
=25
o
C
4
_
O
Pulse Test : Pulse Width = 250µs, Duty Cycle
<
2%
5
O
Essentially Independent of Operating Temperature
P-CHANNEL
POWER MOSFET
Fig 1. Output Characteristics
V
GS
Top :
-1 V
5
-1 V
0
- 8.0 V
- 7.0 V
- 6.0 V
- 5.5 V
- 5.0 V
Bottom : - 4.5 V
SFP9Z24
Fig 2. Transfer Characteristics
-I
D
, Drain Current [A]
-I
D
, Drain Current [A]
1
1
0
1
1
0
1 5
o
C
7
1
0
0
2
o
C
5
- 5
o
C
5
1
-1
0
2
4
6
@Nts:
oe
1 V =0V
.
GS
2 V =-0V
.
DS
3
3 2 0
µ
s P l e T s
. 5
us et
8
1
0
1
0
0
@Nts:
oe
1 2 0
µ
s P l e T s
. 5
us et
2 T = 2
o
C
.
C
5
1
-1 -1
0
1
0
1
0
0
1
1
0
-V
DS
, Drain-Source Voltage [V]
-V
GS
, Gate-Source Voltage [V]
Fig 3. On-Resistance vs. Drain Current
04
.0
Fig 4. Source-Drain Diode Forward Voltage
-I
DR
, Reverse Drain Current [A]
R
DS(on)
, [
Ω
]
Drain-Source On-Resistance
03
.5
1
1
0
03
.0
V =-0V
1
GS
02
.5
1
0
0
1 5
o
C
7
2
o
C
5
1
-1
0
@Nts:
oe
1 V =0V
.
GS
us et
2 2 0
µ
s P l e T s
. 5
02
.0
01
.5
V =-0V
2
GS
01
.0
0
5
1
0
1
5
2
0
2
5
@Nt :T =2 C
oe
J
5
3
0
3
5
4
0
o
05
.
10
.
15
.
20
.
25
.
30
.
35
.
-I
D
, Drain Current [A]
-V
SD
, Source-Drain Voltage [V]
Fig 5. Capacitance vs. Drain-Source Voltage
80
0
C =C +C (C =sotd)
iss gs gd
ds
h r e
C =C +C
oss ds gd
C =C
rss gd
Fig 6. Gate Charge vs. Gate-Source Voltage
1
0
60
0
C
oss
40
0
@Nts:
oe
1 V =0V
.
GS
2 f=1Mz
.
H
20
0
C
rss
-V
GS
, Gate-Source Voltage [V]
C
iss
Capacitance [pF]
V =-2V
1
DS
V =-0V
3
DS
V =-8V
4
DS
5
@Nts:I =97A
oe
D
-.
0
0
4
8
1
2
1
6
0
0
1
0
1
1
0
-V
DS
, Drain-Source Voltage [V]
Q
G
, Total Gate Charge [nC]
SFP9Z24
Fig 7. Breakdown Voltage vs. Temperature
12
.
P-CHANNEL
POWER MOSFET
Fig 8. On-Resistance vs. Temperature
25
.
-BV
DSS
, (Normalized)
Drain-Source Breakdown Voltage
R
DS(on)
, (Normalized)
Drain-Source On-Resistance
20
.
11
.
15
.
10
.
10
.
@Nts:
oe
1 V =-0V
.
GS
1
2 I =-. A
.
D
49
-0
5
-5
2
0
2
5
5
0
7
5
10
0
15
2
10
5
15
7
20
0
09
.
@Nts:
oe
1 V =0V
.
GS
2 I = - 5
µ
A
.
D
20
-0
5
-5
2
0
2
5
5
0
7
5
10
0
15
2
10
5
15
7
20
0
05
.
08
.
-5
7
00
.
-5
7
T
J
, Junction Temperature [
o
C]
T
J
, Junction Temperature [
o
C]
Fig 9. Max. Safe Operating Area
-I
D
, Drain Current [A]
1
2
0
Oeaini Ti Ae
prto n hs ra
i L m t d b R
DS(on)
s iie y
01m
. s
1
1
0
1 m
0 s
D
C
0
Fig 10. Max. Drain Current vs. Case Temperature
1
2
-I
D
, Drain Current [A]
1
2
0
1
0
1m
s
8
6
1
0
@Nts:
oe
1 T = 2
o
C
.
C
5
2 T = 1 5
o
C
.
J
7
3 Snl Ple
. ige us
4
2
1
-1 0
0
1
0
1
1
0
0
2
5
5
0
7
5
10
0
15
2
o
10
5
15
7
-V
DS
, Drain-Source Voltage [V]
T
c
, Case Temperature [ C]
Fig 11. Thermal Response
Thermal Response
D=0.5
10
0
0.2
0.1
0.05
10
- 1
0.02
0.01
single pulse
@ Notes :
1. Z
θ
J C
(t)=3.06
o
C/W Max.
2. Duty Factor, D=t
1
/t
2
3. T
J M
-T
C
=P
D M
*Z
θ
J C
(t)
P
.
DM
t
1.
t
2.
Z (t) ,
θ
JC
10
- 5
10
- 4
10
- 3
10
- 2
10
- 1
10
0
10
1
t
1
, Square Wave Pulse Duration
[sec]