*R
oH
S
CO
M
PL
IA
NT
TISP7072F3,TISP7082F3
LOW-VOLTAGE TRIPLE ELEMENT BIDIRECTIONAL
THYRISTOR OVERVOLTAGE PROTECTORS
TISP70xxF3 (LV) Overvoltage Protector Series
Patented Ion-Implanted Breakdown Region
- Precise DC and Dynamic Voltages
V
DRM
V
(BO)
Device
V
V
D Package (Top View)
T
NC
NC
R
1
2
3
4
8
7
6
5
G
NU
NU
G
‘7072F3
‘7082F3
58
66
72
82
Planar Passivated Junctions
Low Off-State Current..................................<10
μ
A
Rated for International Surge Wave Shapes
- Single and Simultaneous Impulses
I
TSP
Waveshape
Standard
A
NC - No internal connection.
NU - Non-usable; no external electrical connection should be
made to these pins.
Specified ratings require connection of pins 5 and 8.
Device Symbol
T
R
2/10
8/20
10/160
10/700
10/560
10/1000
GR-1089-CORE
IEC 61000-4-5
FCC Part 68
FCC Part 68
ITU-T K.20/21
FCC Part 68
GR-1089-CORE
85
80
65
50
45
40
............................................. UL Recognized Component
SD7XAB
Description
The TISP7xxxF3 series are 3-point overvoltage protectors
designed for protecting against metallic (differential mode) and
simultaneous longitudinal (common mode) surges. Each terminal
pair has the same voltage limiting values and surge current
capability. This terminal pair surge capability ensures that the
protector can meet the simultaneous longitudinal surge
requirement which is typically twice the metallic surge
requirement.
Each terminal pair has a symmetrical voltage-triggered
thyristor characteristic. Overvoltages are initially clipped by
breakdown clamping until the voltage rises to the breakover
level, which causes the device to crowbar into a low-voltage on
state. This low-voltage on state causes the current resulting from
the overvoltage to be safely diverted through the device.
G
Terminals T, R and G correspond to the
alternative line designators of A, B and C
How To Order
Device
TISP70xxF3
Package
D, Small-Outline
Carrier
Tape and Reel
Order As
TISP70xxF3DR-S
WARNING Cancer and Reproductive Harm
www.P65Warnings.ca.gov
*RoHS Directive 2002/95/EC Jan. 27, 2003 including Annex.
Specifications are subject to change without notice. Users should verify actual device performance in their specific
applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the
last page of this document, and at
www.bourns.com/docs/legal/disclaimer.pdf.
MARCH 1994 - REVISED SEPTEMBER 2008
TISP70xxF3 (LV) Overvoltage Protector Series
Description (continued)
The high crowbar holding current helps prevent d.c. latchup as the diverted current subsides. These protectors are guaranteed to voltage limit
and withstand the listed lightning surges in both polarities.
These low voltage devices are guaranteed to suppress and withstand the listed international lightning surges on any terminal pair. Nine similar
devices with working voltages from 100 V to 275 V are detailed in the TISP7125F3 thru TISP7380F3 data sheet.
Absolute Maximum Ratings, TA = 25
°
C (Unless Otherwise Noted)
Rating
Repetitive peak off-state voltage, 0
°C
< T
A
< 70
°C
‘7072F3
‘7082F3
Non-repetitive peak on-state pulse current (see Notes 1 and 2)
1/2 (Gas tube differential transient, 1/2 voltage wave shape)
2/10 (Telcordia GR-1089-CORE, 2/10 voltage wave shape)
1/20 (ITU-T K.22, 1.2/50 voltage wave shape, 25
Ω
resistor)
8/20 (IEC 61000-4-5, combination wave generator, 1.2/50 voltage wave shape)
10/160 (FCC Part 68, 10/160 voltage wave shape)
4/250 (ITU-T K.20/21, 10/700 voltage wave shape, simultaneous)
0.2/310 (CNET I 31-24, 0.5/700 voltage wave shape)
5/310 (ITU-T K.20/21, 10/700 voltage wave shape, single)
5/320 (FCC Part 68, 9/720 voltage wave shape, single)
10/560 (FCC Part 68, 10/560 voltage wave shape)
10/1000 (Telcordia GR-1089-CORE, 10/1000 voltage wave shape)
Non-repetitive peak on-state current, 0
°C
< T
A
< 70
°C
(see Notes 1 and 3)
50 Hz, 1 s
Initial rate of rise of on-state current, Linear current ramp, Maximum ramp value < 38 A
Junction temperature
Storage temperature range
I
TSM
di
T
/dt
T
J
T
stg
I
PPSM
240
85
45
80
65
60
50
50
50
45
40
4.3
250
-65 to +150
-65 to +150
A
A/μs
°C
°C
A
V
DRM
58
66
V
Symbol
Value
Unit
NOTES: 1. Initially, t he TISP
®
device must be in thermal equilibrium at the specified T
A
. The surge may be repeated after the TISP
®
device
returns to its initial conditions. The rated current values may be applied singly either to the R to G or to the T to G or to the T
.
to R terminals. Additionally, both R to G and T to G may have their rated current values applied simultaneously (in this case
the total G terminal current will be twice the above rated current values).
2. See Thermal Information for derated I
PPSM
values 0
°C
< T
A
< 70
°C
and Applications Information for details on wave shapes.
3. Above 70
°C,
derate I
TSM
linearly to zero at 150
°C
lead temperature.
MARCH 1994 - REVISED SEPTEMBER 2008
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at
www.bourns.com/docs/legal/disclaimer.pdf.
TISP70xxF3 (LV) Overvoltage Protector Series
Electrical Characteristics for all Terminal Pairs, T A = 25
°
C (Unless Otherwise Noted)
Parameter
Repetitive peak off-
state current
Breakover voltage
Test Conditions
V
D
= V
DRM
, 0
°C
< T
A
< 70
°C
dv/dt =
±250
V/ms, R
SOURCE
= 300
Ω
dv/dt
≤
±1000
V/μs, Linear voltage ramp,
Maximum ramp value =
±500
V
di/dt =
±20
A/μs, Linear current ramp,
Maximum ramp value =
±10
A
dv/dt =
±250
V/ms, R
SOURCE
= 300
Ω
I
T
=
±5
A, t
W
= 100
μs
I
T
=
±5
A, di/dt = - /+30 mA/ms
Linear voltage ramp, Maximum ramp value < 0.85V
DRM
V
D
=
±50
V
f = 1 MHz,
f = 1 MHz,
f = 1 MHz,
f = 1 MHz,
f = 1 MHz,
‘7072F3
‘7082F3
‘7072F3
‘7082F3
±0.1
±0.15
±5
±10
69
73
66
56
33
37
Min
Typ
Max
±10
±72
±82
±90
±100
±0.8
±5
Unit
μA
V
I
DRM
V
(BO)
V
(BO)
I
(BO)
V
T
I
H
dv/dt
I
D
Impulse breakover
voltage
Breakover current
On-state voltage
Holding current
Critical rate of rise of
off-state voltage
Off-state current
V
A
V
A
kV/μs
μA
C
off
Off-state capacitance
V
d
= 1 V rms, V
D
= 0
V
d
= 1 V rms, V
D
= -1 V
V
d
= 1 V rms, V
D
= -2 V
V
d
= 1 V rms, V
D
= -5 V
V
d
= 1 V rms, V
D
= -50 V
53
56
51
43
25
29
pF
f = 1 MHz, V
d
= 1 V rms, V
DTR
= 0
(see Note 4)
NOTE
4: Three-terminal guarded measurement, unmeasured terminal voltage bias is zero. First six capacitance values, with bias V
D
, are
for the R-G and T-G terminals only. The last capacitance value, with bias V
DTR
, is for the T-R terminals.
Thermal Characteristics
Parameter
R
θ
JA
Junction to free air thermal resistance
Test Conditions
P
tot
= 0.8 W, T
A
= 25
°
C
5 cm
2
, FR4 PCB
Min
Typ
Max
160
Unit
°
C/W
MARCH 1994 - REVISED SEPTEMBER 2008
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at
www.bourns.com/docs/legal/disclaimer.pdf.
TISP70xxF3 (LV) Overvoltage Protector Series
Parameter Measurement Information
+i
I
TSP
Quadrant I
Switching
Characteristic
I
TSM
V
(BO)
I
H
I
DRM
-v
V
DRM
I
DRM
I
H
V
D
I
D
I
D
V
D
V
DRM
+v
I
(BO)
I
(BO)
V
(BO)
I
TSM
Quadrant III
Switching
Characteristic
I
TSP
-i
PMXXAAA
Figure 1. Voltage-Current Characteristic for T and R Terminals
T and G and R and G Measurements are Referenced to the G Terminal
T and R Measurements are Referenced to the R Terminal
MARCH 1994 - REVISED SEPTEMBER 2008
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at
www.bourns.com/docs/legal/disclaimer.pdf.
TISP70xxF3 (LV) Overvoltage Protector Series
Typical Characteristics - R and G, or T and G Terminals
OFF-STATE CURRENT
vs
JUNCTION TEMPERATURE
NORMALIZED BREAKDOWN VOLTAGES
vs
JUNCTION TEMPERATURE
TC7LAE
100
TC7LAC
Normalized Breakdown Voltages
1.2
10
I
D
- Off-State Current -
μ
A
1
1.1
V
(BO)
V
(BR)M
1.0
V
(BR)
Normalized to V
(BR)
I
(BR)
= 1 mA and 25
°
C
Positive Polarity
0-1
V
D
= -50 V
V
D
= 50 V
0-01
0-001
-25
0
25
50
75
100
125
150
T
J
- Junction Temperature -
°
C
0.9
-25
0
25
50
75
100
125
150
T
J
- Junction Temperature -
°C
Figure 2.
Figure 3.
NORMALIZED BREAKDOWN VOLTAGES
vs
JUNCTION TEMPERATURE
TC7LAF
100
OFF-STATE CURRENT
vs
ON-STATE VOLTAGE
TC7LAL
Positive Polarity
Normalized Breakdown Voltages
1.2
I
T
- On-State Current - A
Normalized to V
(BR)
I
(BR)
= 1 mA and 25
°C
V
(BR)M
0.9
-25
0
25
50
75
100
125
150
T
J
- Junction Temperature -
°C
Negative Polarity
1
1
2
13
4
5
6
7 8 9 0
V
T
- On-State Voltage - V
1.1
V
(BO)
10
1.0
V
(BR)
150
°C
25
°C
-40
°C
Figure 4.
MARCH 1994 - REVISED SEPTEMBER 2008
Figure 5.
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at
www.bourns.com/docs/legal/disclaimer.pdf.