TSOP15..XG1
Vishay Telefunken
Photo Modules for PCM Remote Control Systems
Available types for different carrier frequencies
Type
TSOP1530XG1
TSOP1536XG1
TSOP1538XG1
TSOP1556XG1
fo
30 kHz
36 kHz
38 kHz
56 kHz
Type
TSOP1533XG1
TSOP1537XG1
TSOP1540XG1
fo
33 kHz
36.7 kHz
40 kHz
Description
The TSOP15..XG1 – series are miniaturized receivers
for infrared remote control systems. PIN diode and
preamplifier are assembled on lead frame, the epoxy
package is designed as IR filter.
The demodulated output signal can directly be de-
coded by a microprocessor. The main benefit is the
reliable function even in disturbed ambient and the
protection against uncontrolled output pulses.
GND
V
S
OUT
96 12595
Features
D
Photo detector and preamplifier in one package
D
Internal filter for PCM frequency
D
Improved shielding against electrical field
disturbance
Special Features
D
Improved directivity
D
Enhanced immunity against all kinds of
disturbance light
D
D
D
D
TTL and CMOS compatibility
Output active low
Low power consumption
Suitable burst length
≥10
cycles/burst
D
No occurrence of disturbance pulses at the
output
Block Diagram
2
Input
Control
Circuit
80 k
W
3
PIN
AGC
Band
Pass
Demodu-
lator
1
GND
OUT
V
S
94 8136
Document Number 82073
Rev. 4, 30-Mar-01
www.vishay.com
1 (8)
TSOP15..XG1
Vishay Telefunken
Absolute Maximum Ratings
T
amb
= 25
_
C
Parameter
Supply Voltage
Supply Current
Output Voltage
Output Current
Junction Temperature
Storage Temperature Range
Operating Temperature Range
Power Consumption
Soldering Temperature
Test Conditions
(Pin 2)
(Pin 2)
(Pin 3)
(Pin 3)
Symbol
V
S
I
S
V
O
I
O
T
j
T
stg
T
amb
P
tot
T
sd
Value
–0.3...6.0
5
–0.3...6.0
5
100
–25...+85
–25...+85
50
260
Unit
V
mA
V
mA
°
C
°
C
°
C
mW
°
C
(T
amb
85
°
C)
t
10 s, 1 mm from case
x
x
Basic Characteristics
T
amb
= 25
_
C
Parameter
Supply Current (
y
(Pin 2)
)
Supply Voltage (Pin 2)
Transmission Distance
Output Voltage Low (Pin 3)
Irradiance (30 – 40 kHz)
Irradiance (56 kHz)
Irradiance
Directivity
Test Conditions
V
S
= 5 V, E
v
= 0
V
S
= 5 V, E
v
= 40 klx, sunlight
E
v
= 0, test signal see fig.7, IR
diode TSAL6200, I
F
= 300 mA
I
OSL
= 0.5 mA,
E
e
= 0.7 mW/m
2
, f = f
o
, t
p
/T = 0.4
Pulse width tolerance:
t
pi
– 5/f
o
< t
po
< t
pi
+ 6/f
o
, test
signal (see fig.7)
Angle of half transmission distance
Symbol
I
SD
I
SH
V
S
d
V
OSL
E
e min
E
e min
E
e max
ϕ
1/2
30
±55
0.25
0.3
Min
0.4
4.5
35
250
Typ
1.0
5.5
Max
1.5
Unit
mA
mA
V
m
mV
0.38 mW/m
2
0.45 mW/m
2
W/m
2
deg
Application Circuit
100
W
*)
2
TSOP15..
TSAL62..
3
4.7
m
F *)
>10
k
W
optional
**)
+5V
m
C
1
14375
GND
*) recommended to suppress power supply disturbances
**) The output voltage should not be hold continuously at a voltage below 3.3V by the external circuit.
www.vishay.com
2 (8)
Document Number 82073
Rev. 4, 30-Mar-01
TSOP15..XG1
Vishay Telefunken
Suitable Data Format
The circuit of the TSOP15..XG1 is designed in that
way that unexpected output pulses due to noise or
disturbance signals are avoided. A bandpassfilter, an
integrator stage and an automatic gain control are
used to suppress such disturbances.
The distinguishing mark between data signal and
disturbance signal are carrier frequency, burst length
and duty cycle.
The data signal should fullfill the following condition:
•
Carrier frequency should be close to center
frequency of the bandpass (e.g. 38kHz).
•
Burst length should be 10 cycles/burst or longer.
•
After each burst which is between 10 cycles and 70
cycles a gap time of at least 14 cycles is neccessary.
•
For each burst which is longer than 1.8ms a
corresponding gap time is necessary at some time in
the data stream. This gap time should be at least 4
times longer than the burst.
•
Up to 800 short bursts per second can be received
continuously.
Some examples for suitable data format are:
NEC Code (repetitive pulse), NEC Code (repetitive
data), Toshiba Micom Format, Sharp Code, RC5
Code, RC6 Code, R–2000 Code.
When a disturbance signal is applied to the
TSOP15..XG1 it can still receive the data signal.
However the sensitivity is reduced to that level that no
unexpected pulses will occure.
Some examples for such disturbance signals which
are suppressed by the TSOP15..XG1 are:
•
DC light (e.g. from tungsten bulb or sunlight)
•
Continuous signal at 38kHz or at any other
frequency
•
Signals from fluorescent lamps with electronic
ballast with high or low modulation (see Figure A or
Figure B).
0
5
10
time [ms]
15
20
Figure A: IR Signal from Fluorescent Lamp with low Modulation
0
5
10
time [s]
15
20
Figure B: IR Signal from Fluorescent Lamp with high Modulation
Document Number 82073
Rev. 4, 30-Mar-01
www.vishay.com
3 (8)
TSOP15..XG1
Vishay Telefunken
Typical Characteristics
(T
amb
= 25
_
C unless otherwise specified)
E
e min
– Threshold Irradiance ( mW/m
2
)
1.0
/ E – Rel. Responsitivity
e
0.8
2.0
f ( E ) = f
0
1.6
1.2
0.8
0.4
0.0
0.7
94 8143
0.6
0.4
0.2
0.0
0.8
0.9
1.0
1.1
1.2
1.3
f / f
0
– Relative Frequency
f = f
0
5%
D
f ( 3 dB ) = f
0
/ 10
"
e
E
min
0.0
94 8147
0.4
0.8
1.2
1.6
2.0
E – Field Strength of Disturbance ( kV / m )
Figure 1. Frequency Dependence of Responsivity
1.0
0.9
t
po
– Output Pulse Length (ms)
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.1
12841
Figure 4. Sensitivity vs. Electric Field Disturbances
10
f = f
0
1 kHz
Input burst duration
E
e min
– Threshold Irradiance ( mW/m
2
)
10 kHz
1
l
= 950 nm,
optical test signal, fig.7
100 Hz
1.0
10.0
100.0 1000.0 10000.0
94 9106
0.1
0.01
0.1
1
10
100
1000
E
e
– Irradiance ( mW/m
2
)
D
V
s RMS –
AC Voltage on DC Supply Voltage ( mV )
Figure 2. Sensitivity in Dark Ambient
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
0.01
0.10
1.00
10.00
100.00
Ambient,
l
= 950 nm
Correlation with ambient light sources
( Disturbance effect ) : 10W/m
2
1.4 klx
( Stand.illum.A, T = 2855 K ) 8.2 klx
( Daylight, T = 5900 K )
Figure 5. Sensitivity vs. Supply Voltage Disturbances
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
–30 –15
0
15
30
45
60
75
90
Sensitivity in dark ambient
E
e min
– Threshold Irradiance (mW/m
2
)
^
^
E
e min
– Threshold Irradiance (mW/m
2
)
96 12111
E – DC Irradiance (W/m
2
)
96 12112
T
amb
– Ambient Temperature (
°C
)
Figure 3. Sensitivity in Bright Ambient
Figure 6. Sensitivity vs. Ambient Temperature
www.vishay.com
4 (8)
Document Number 82073
Rev. 4, 30-Mar-01
TSOP15..XG1
Vishay Telefunken
Optical Test Signal
E
e
(IR diode TSAL6200, I
F
= 0.4 A, 30 pulses, f = f
0
, T = 10 ms)
1.0
T
on
,T – Output Pulse Length (ms)
off
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.1
1.0
l
= 950 nm,
optical test signal, fig.8
T
on
t
t
pi
*
* t
pi
w
T
10/fo is recommended for optimal function
16110
T
off
V
O
V
OH
V
OL
Output Signal
1)
2)
7/f
0
<
t
d
<
15/f
0
t
po
=
t
pi
6/f
0
t
t
po2
)
"
10.0
100.0 1000.0 10000.0
t
d1 )
12843
E
e
– Irradiance (mW/m
2
)
Figure 7. Output Function
E
e
Optical Test Signal
1.0
0.9
I
s
– Supply Current ( mA )
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
Figure 10. Output Pulse Diagram
V
s
= 5 V
600
m
s
T = 60 ms
600
m
s
t
94 8134
V
O
V
OH
V
OL
Output Signal,
( see Fig.10 )
0
–30 –15
T
on
T
off
t
96 12115
0
15
30
45
60
75
90
T
amb
– Ambient Temperature (
°C
)
Figure 8. Output Function
0.8
0.7
Envelope Duty Cycle
0.6
0.5
0.4
0.3
0.2
0.1
0
10
16153
Figure 11. Supply Current vs. Ambient Temperature
1.2
1.0
0.8
0.6
0.4
0.2
0
750
94 8408
S (
l
)
rel
– Relative Spectral Sensitivity
20
30
40
50
60
70
80
90
850
950
1050
1150
Burstlength [number of cycles/burst]
l
– Wavelength ( nm )
Figure 9. Sensitivity vs. Duty Cycle
Figure 12. Relative Spectral Sensitivity vs. Wavelength
Document Number 82073
Rev. 4, 30-Mar-01
www.vishay.com
5 (8)