基于PEV的双向DC/DC变换器的研究 2012-08-23
2012-08-24 来源:21ic
1 纯电动汽车电力传动系统
纯电动汽车电力传动系统原理如图1所示,该PEV的电力传动系统是由锂离子蓄电池和超级电容提供能量。锂离子电池作为主要能源保证该车的正常行驶,超级电容作为辅助能源在该车加速、爬坡时为电机提供能量,并在减速、下坡时通过回馈制动为超级电容充电。根据以上特点,需要在超级电容与逆变器之间串联大功率双向DC/DC变换器才能满足超级电容的恒压放电和恒流充电。
2 双向大功率DC/DC变换器
双向DC/DC变换器按是否含变压器分为隔离型和非隔离型。隔离型模块的可靠性高,但成本高、效率差。在大功率输入输出的情况下,非隔离型双向DC/DC模块以其简单的结构和较高的功率传输效率成为理想的选择。双向DC/DC变换器模型如图2所示。
超级电容在放电时,双向大功率DC/DC变换器工作在boost模式下。此时,IGBT1始终保持在关断状态,其反并联的二极管作续流二极管用,仅控制IGBT2的开断以保持恒压放电。超级电容充电时,双向大功率DC/DC变换器则工作在buck模式下。此时,IGBT2始终保持在关断状态,其反并联的二极管作续流二极管用,仅控制IGBT1的开断以保持恒流充电。
下面主要分析双向大功率DC/DC变换器在boost和buck模式下的电气参数、控制参数和输出特性的关系。
3 双向DC/DC变换器控制
对于该电路,在boost模式情况下,电感L的大小通常根据电路的纹波要求来设计。电路工作在连续模式下,可知。由于超级电容的输出电压会随着功率的输出而降低,因此通常我们考虑输出电压在一个范围内变化。
本文中超级电容输出电压的变化范围是150V≤Ui≤250 V,Uo稳定在500 V。由此,可计算占空比的取值范围
上式可以看成是仅含变量D的一个函数。对函数L(D)求导后发现,当D=1/3时,L取得最大值。保证电路工作在连续导电模式下,△iL≤ 2IL。考虑到电感会饱和,除此之外,IGBT的峰值电流和电压损耗问题也需要减小。在实际中我们通常取△iL≤0.25IL。在本文中,取△iL ≤0.25IL。fs为开关管的工作频率,当频率高的时候,输出谐波含量少,有利于滤波。但是,开关损耗增加。当开关频率低时,波形质量会很差。因此,应综合选取开关管频率。本文选取开关频率为20 kHz。
根据以上计算,电感取值为1 mH,电容取值为470μF。当变换器工作在boost模式下,需要得到恒定的输出电压,此时选用电压反馈控制方式。如图3所示,将输出电压采集后与参考电压比较,通过PI调节器后,与三角波比较生成PWM波控制IGBT的开断。
此模式下,boost电路的输入端为超级电容,初始电压为250 V。放电过程中,电压呈指数下降,放电时间为20 s,电压最后为150 V。在此过程中,保证变换器输出端电压始终为500 V,如图4所示。
当变换器工作在buck模式下,需要得到恒定的电流为超级电容充电,此时选用电流反馈控制方式。如图5所示,采集输出电流与给定电流比较,通过PI调节器后,再与三角波比较,生成PWM波控制IGBT的开断。
此模式下,buck电路是输入为逆变器的直流侧,初始电压为500 V。充电时间10 s。电压下降,输出充电电流恒为200 A。图6中为buck模式下输入电压、输出电流图。
4 结束语
本文分析了大功率双向DC/DC变换器在纯电动汽车中与超级电容器的配合应用,在不同的功率流向时,需要考虑不同的控制方式。通过仿真分析,在不同的时间对在同一电路中的两个开关管分别控制,能达到超级电容恒压放电和恒流充电的工程要求,证明该系统稳定可行。
上一篇:电子结构的三防设计
下一篇:开关电源三种控制技术全面解析
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- 如何选择电压基准源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 恩智浦发布MC33777,革新电动汽车电池组监测技术
- 废旧锂离子电池回收取得重要突破
- Jolt Capital收购并投资Dolphin Design 精心打造的混合信号IP业务
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样