LDO 基础知识:噪声 - 前馈电容器如何提高系统性能
2022-04-21 来源:EEWORLD
在LDO 基础知识:噪声 - 降噪引脚如何提高系统性能一文中,我们讨论了如何使用与基准电压 (CNR/SS) 并联的电容器降低输出噪声和控制压摆率。在本文中,我们将讨论降低输出噪声的另一种方法:使用前馈电容器 (CFF)。
什么是前馈电容器?
前馈电容器是与电阻分压器顶部电阻并联的可选电容器,如图1所示。
图 1:使用前馈电容器的低压降稳压器 (LDO)
类似于降噪电容器 (CNR/SS),添加前馈电容器具有多种影响。这些影响包括改善噪声、稳定性、负载响应和电源抑制比 (PSRR)。应用报告“使用前馈电容器和低压降稳压器的优缺点”详细介绍了这些优点。另外,还值得注意的是,前馈电容器仅在使用可调LDO时才可行,因为电阻器网络是外部的。
改善噪声
作为电压调节控制环路的一部分,LDO的误差放大器使用电阻器网络(R1和R2)来提高基准电压的增益,类似于驱动场效应晶体管栅极的同相放大器电路,以使 (VOUT = VREF × (1 + R1/R2)。这种增加意味着基准的直流电压将按1 + R1/R2系数提高。在误差放大器的带宽内,基准电压的交流元件(例如噪声)也会被放大。
通过在顶部电阻器 (CFF) 上添加电容器,会为特定频率范围引入交流分流器。换句话说,该频率范围中的交流元件会保持在单位增益范围内。请记住,您使用的电容器的阻抗特性将决定这个频率范围。
图 2 演示了TPS7A91噪声的减小(通过使用不同的CFF值)。
图 2:TPS7A91 噪声与频率和CFF值的关系
通过在顶部电阻器上添加一个100nF电容器,您可将噪声从9μVRMS降至4.9μVRMS。
改进稳定性和瞬态响应
添加CFF还会在LDO反馈环路中引入零点 (ZFF) 和极点 (PFF),使用公式1和2计算得出:
ZFF = 1 / (2 × π × R1 × CFF) (1)
PFF = 1 / (2 × π × R1 // R2 × CFF) (2)
将零点置于发生单位增益的频率之前可提高相位裕度,如图3所示。
图 3:仅使用前馈补偿的典型LDO的增益/相位图
您可以看到,如果没有ZFF,单位增益会更早出现,大约为200kHz。通过添加零点,单位增益频率在大约300kHz处略微向右推,但相位裕度也有所改善。由于PFF位于单位增益频率的右侧,因此其对相位裕度的影响将是最小的。
在提高LDO的负载瞬态响应后,额外的相位裕度将很明显。通过增加相位裕度,LDO 输出将出现较少的振铃,稳定速度会更快。
改善PSRR
根据零点和极点的位置,您还可以战略性地减少增益滚降。图3显示了零点对从 100kHz开始的增益滚降的影响。通过增加频带的增益,您还将改善该频带的环路响应,从而使特定频率范围的PSRR得到改善。请参阅图4。
图 4:TPS7A8300 PSRR与频率和CFF值间的关系
如您所见,增加CFF电容会将零点向左推,从而改善环路响应和较低频率范围内的相应PSRR。
当然,您必须选择CFF的值以及ZFF和PFF的对应位置,以避免导致不稳定性。您可以通过遵循数据表中规定的CFF限制来避免不稳定性,但我们通常建议选择介于10nF和 100nF之间的值。较大的CFF可能会带来前面提到的优缺点应用报告中概述的其他挑战。
表 1 列出了一些关于CNR和CFF如何影响噪声的经验法则。
表 1:CNR 和CFF的优势与频率间的关系
结语
添加前馈电容器可以改善噪声、稳定性、负载响应和PSRR。当然,您必须仔细选择电容器以保持稳定性。与降噪电容器配合使用时,可以大大提高交流性能。这些只是优化电源时需要牢记的一些工具。
- 使用超低噪声LDO提供“干净”的电源
- 共模半导体推出可替代TI的TPS7A11型号的700mA低功耗高精度LDO稳压器 GM1500
- 基于LDO的音频功放测试技术(LM4990为例)
- 共模半导体推可替代ADI的ADP7104等系列产品的20V/500mA低功耗低噪声LDO 稳压器 GM12071
- 电源模块的封装类型及相应的优点
- 共模半导体推出可替代ADI的ADP7104、ADP7102的20V/500mA低功耗低噪声LDO 稳压器 GM12071
- 车身定位系统,车窗控制系统,多功能方向盘-低功耗、低压差车规LDO
- 共模半导体推出40V/300mA低功耗低噪声LDO 稳压器 GM1400
- 『共模半导体』推出20V/300mA低功耗低噪声LDO稳压器GM1207
- SD4400兼容ACT88325四路5V/3A Buck,两路300mA LDO,SSD专用供电PMU
- 华为固态电池新突破:硫化物电解质专利发布,破解液态电池衰减难题
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 48V 技术的魅力:系统级应用中的重要性、优势与关键要素
- 如何选择电压基准源
- 南芯科技推出面向储能市场的80V高效同步双向升降压充电芯片
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 恩智浦发布MC33777,革新电动汽车电池组监测技术
- 废旧锂离子电池回收取得重要突破
- Jolt Capital收购并投资Dolphin Design 精心打造的混合信号IP业务
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样