嵌入式
返回首页

手持移动终端的可重构天线设计

2014-12-09 来源:e-works

O 引言

    目前,各种通信系统发展的重要方向之一是大容量、多功能、超宽带。通过提高系统容量、增加系统功能、扩展系统带宽,一方面可以满足日益膨胀的实际需求,另一方面也可以降低系统成本。而天线作为各种无线通信系统的前端,其性能对于通信系统整体功能具有重要的影响,因此也相应的对其提出了诸如多频、宽带、小型化等要求。随着无线通信系统的日益复杂化,单一的传统天线已经不能满足要求。而多天线设计虽然可以满足新一代无线通信系统对天线的高要求,但是,天线数目的增多,会使设备成本、天线的空间布局等问题凸显出来。特别是在手持移动设备上,由于空间有限,使得多天线的设计异常困难。在这种情况下,可重构天线就具有非常明显的优势。它可在不改变天线的尺寸和结构的情况下在天线的方向图、工作频率、极化特性等方面实现重构,从而使一个天线能够实现多个天线的功能,适应移动终端不同的应用环境和要求。

    在天线的方向图可重构方面,目前的研究主要集中在采用八木形式的结构上。即通过开关控制来改变反射器或引向器的有效谐振长度,从而实现反射或者引向作用,使天线的辐射方向发生变化。但是,这种方式需要多个天线。故在手持终端有限的空间下,采用这种方式有很大的困难。另外,在天线极化方式可重构方面,研究的重点也是单贴片的天线,即通过在天线上开槽或者采用多条馈线,并在不同位置安装开关来改变开关的状态从而实现极化方式的变化,但是,这种天线的面积较大,同时采用多条馈线的结构太复杂,都不适用于实际的移动设备。

    本文提出了一种用于手持移动设备的可重构天线.该天线在适当位置安装了RF-PIN开关,可通过直流控制电路控制开关的通断,以使天线以两种正交的线极化方式工作,同时也使天线的方向图发生变化,从而实现极化方式和方向图的重构。该天线结构紧凑,面积小,易于制造,并具有在同一终端安装多个天线来实现MIMO(多输入多输出系统)的潜力,故在移动终端中有良好的应用价值。

1 天线结构与设计

    天线可以与手持设备电路板集成在一起,安装在电路板的左上角,其结构和RF-PIN开关控制电路示意图如图1所示。

 
图1  天线结构及开关电路示意图

    通常的天线版图位于介质基片的底面,控制电路位于基片的顶面,图l中的D1、D2为两个RF-PIN开关;Cl、C2为旁路电容,对高频信号短路;L1、L2为电感,对高频信号开路。二极管和电容通过通孔与底面的天线连接。该天线基片采用厚度为0.8 mm,介电常数为4.4的FR4材料。水平与垂直的两个微带结构通过RF-PIN开关与电路板地相连,中间的微带为馈线,并通过同轴电缆直接馈电。微带天线的谐振频率主要取决于微带线的长度,在一般情况下,在介电常数为εeff的基片上,微带线的波导波长约为:   

 图2  两种模式下天线S11曲线

    由于两种工作状态下,天线的接地端不同,因此,天线的有效辐射部分也有所不同。当处于X模式时,天线结构中垂直部分的微带线接地,因此,天线的辐射部分应该为水平部分的微带,天线也相应工作在水平极化方式。图3所示为天线在2.44 GHz时的射频电流分布图。 
图3  天线在2.44GHZ时的射频电流分布图

    从图3可以看出,射频电流主要集中在天线水平方向的微带线上(这印证了前面的分析)。但同时,在中间部分的微带以及天线其他部分也存在射频电流,因此,天线仍会辐射部分垂直极化波。图4所示为天线的两种极化波在XY及YZ平面的方向图。

2.在不同模式下的对比分析

    图4中,Theta表示水平极化方波,Phi表示垂直极化波,从图中可以看出,在XY平面上,水平极化波的平均增益比垂直极化波高35 dB以上,而在YZ平面上,水平极化波具有良好的全向性,且平均增益比垂直极化波高约10 dB,因此可以判断,水平极化波能量远大于垂直极化波能量,天线工作在水平极化方式下。


图4  天线在模式X下的两种极化波在XY和YZ平面的方向图

    当处于Y模式下时,天线结构中水平部分的微带线接地,因此,垂直部分的微带线是天线的有效辐射体,此时天线也相应工作在垂直极化方式下。图3(b)所示为模式Y下天线在2.4 GHz的射频电流分布图,从图中可以看出,此时的射频电流主要集中在天线垂直方向的微带线上,天线此时工作在垂直极化方式下。图5所示为该模式下天线两种极化波在XY和YZ平面的方向图。

    从图5中可以看出,在XY平面上,垂直极化波的最大增益比水平极化波高37 dBi,同时在YZ平面上,垂直极化波也有良好的全向性。其最大增益比水平极化波高12 dB,说明在该模式下,天线可良好地辐射垂直极化波,而交叉极化分量很低。

 
图5  天线在模式Y下的两种极化波在XY和YZ平面的方向图

    事实上,在两种工作模式下,天线的总体方向图会发生显著变化。在YZ和XZ两个平面上。天线方向图具有良好的全向性,能尽可能的接受各个方向的来波信号;而在XY平面上,天线在两种状态下的方向图显著不同,最大辐射方向会发生明显改变,并且在这个辐射平面上可以实现良好的互补。故在实际应用中,应根据信号波的方向和强度的不同,来实时改变天线状态,调整方向图的最大辐射方向,以有效地提高天线信号的信噪比,提高通信速率和系统容量。

3 结束语

    本文提出了一种用于手持移动设备的可重构天线的设计方法,该天线安装了两个RF-PIN开关,可通过一个直流控制电路来控制开关的通断,以使天线工作在垂直极化或水平极化方式,同时也使天线方向图发生变化,从而实现极化方式和方向图的同时重构。仿真结果表明,在两种状态下,该天线的-10 dB带宽均可达到240 MHz。而且通过开关状态的切换,还可以使天线在水平和垂直线极化方式之间切换,并使天线辐射方向图的主瓣方向也偏转150°。该天线结构紧凑,面积小,易于制造,可用于移动终端的多天线系统,因此在移动通信系统中有良好的应用价值。

进入嵌入式查看更多内容>>
相关视频
  • PX4固件二次开发课程

  • RISC-V嵌入式系统开发

  • NuttX Workshop 2024

  • 自己动手写操作系统

  • SOC系统级芯片设计实验

  • 自己动手做一台计算机

精选电路图
  • PIC单片机控制的遥控防盗报警器电路

  • 使用ESP8266从NTP服务器获取时间并在OLED显示器上显示

  • 用NE555制作定时器

  • 如何构建一个触摸传感器电路

  • 基于ICL296的大电流开关稳压器电源电路

  • 基于TDA2003的简单低功耗汽车立体声放大器电路

    相关电子头条文章