ACST6
Overvoltage protected AC switch
Datasheet
-
production data
OUT
Benefits
•
Enables equipment to meet IEC 61000-4-5
•
High off-state reliability with planar technology
•
Needs no external overvoltage protection
G
OUT
COM
G
OUT
COM
•
Reduces the power passive component count
•
High immunity against fast transients
described in IEC 61000-4-4 standards
TO-220AB
ACST610-8T
OUT
TO-220FPAB
ACST610-8FP
OUT
Applications
•
AC mains static switching in appliance and
industrial control systems
G
COM
G
OUT
COM
•
Drive of medium power AC loads such as:
– Universal motor of washing machine drum
– Compressor for fridge or air conditioner
D²PAK
ACST610-8G
I²PAK
ACST610-8R
Description
The ACST6 series belongs to the ACS/ACST
power switch family built with A.S.D. (application
specific discrete) technology. This high
performance device is suited to home appliances
or industrial systems, and drives loads up to 6 A.
This ACST6 switch embeds a Triac structure and
a high voltage clamping device able to absorb the
inductive turn-off energy and withstand line
transients such as those described in the
IEC 61000-4-5 standards. The ACST610 needs
only low gate current to be activated (I
GT
< 10
mA) and still shows a high noise immunity
complying with IEC standards such as IEC
61000-4-4 (fast transient burst test).
Table 1. Device summary
Symbol
I
T(RMS)
V
DRM
/V
RRM
I
GT
Value
6
800
10
Unit
A
V
mA
Figure 1. Functional diagram
OUT
G
COM
Features
•
Triac with overvoltage protection
•
Low I
GT
(< 10 mA)
•
TO-220FPAB insulated package:
– complies with UL standards
(file ref: E81734)
– insulation voltage: 2000 V
RMS
May 2017
This is information on a product in full production.
DocID7297 Rev 11
1/20
www.st.com
Characteristics
ACST6
1
Characteristics
Table 2. Absolute ratings (limiting values)
Symbol
Parameter
TO-220FPAB
T
c
= 92 °C
Value
Unit
I
T(RMS)
On-state rms current (full sine wave)
TO-220AB/
D
2
PAK / I
2
PAK
D
2
PAK with
1 cm
2
copper
6
T
c
= 106 °C
T
amb
= 62 °C
t
p
= 16.7 ms
t
p
= 20 ms
t
p
= 10 ms
1.5
47
45
13
100
2
0.1
10
1.6
-40 to +150
-40 to +125
260
2000
A
A
A
2
s
A/µs
kV
W
W
A
°C
°C
°C
V
A
I
TSM
I
2
t
dI/dt
V
PP
P
G(AV)
P
GM
I
GM
T
stg
T
j
T
l
Non repetitive surge peak on-state current T
j
initial = 25 °C, ( full cycle sine wave)
I
2
t for fuse selection
Critical rate of rise on-state current
I
G
= 2 x I
GT,
(t
r
≤
100 ns)
Non repetitive line peak pulse voltage
(1)
Average gate power dissipation
Peak gate power dissipation (t
p
= 20 µs)
Peak gate current (t
p
= 20 µs)
Storage temperature range
Operating junction temperature range
F = 60 Hz
F = 50 Hz
F = 120 Hz
T
j
= 125 °C
T
j
= 25 °C
T
j
= 125 °C
T
j
= 125 °C
T
j
= 125 °C
Maximum lead solder temperature during 10 ms (at 3 mm from plastic case)
TO-220FPAB
V
INS(RMS)
Insulation RMS voltage (60 seconds)
1. According to test described in IEC 61000-4-5 standard and
Figure 18.
Table 3. Electrical characteristics
Symbol
I
GT(1)
V
GT
V
GD
I
H(2)
I
L
I
L
dV/dt
(2)
Test conditions
V
OUT
= 12 V, R
L
= 33
Ω
V
OUT
= 12 V, R
L
= 33
Ω
V
OUT
= V
DRM,
R
L
= 3.3 kΩ
I
OUT
= 500 mA
I
G
= 1.2 x I
GT
I
G
= 1.2 x I
GT
V
OUT
= 67 % V
DRM
, gate open
I - III
II
Quadrant
I - II - III
I - II - III
I - II - III
T
j
25 °C
25 °C
125 °C
25 °C
25 °C
25 °C
125 °C
125 °C
25 °C
MAX.
MAX.
MIN.
MAX.
MAX.
MAX.
MIN.
MIN.
MIN.
Value
10
1.0
0.2
25
30
40
500
3.5
850
Unit
mA
V
V
mA
mA
mA
V/µs
A/ms
V
(dI/dt)
c(2)
(dV/dt)
c
= 15 V/µs
V
CL
I
CL
= 0.1 mA, t
p
= 1 ms
1. Minimum I
GT
is guaranteed at 5% of I
GT
max
2. For both polarities of OUT pin referenced to COM pin
2/20
DocID7297 Rev 11
ACST6
Table 4. Static characteristics
Symbol
V
TM(1)
V
T0(1)
R
d(1)
I
DRM
I
RRM
I
OUT
= 2.1 A, t
p
= 500 µs
I
OUT
= 8.5 A, t
p
= 500 µs
Threshold voltage
Dynamic resistance
V
OUT
= V
DRM
/ V
RRM
Test conditions
T
j
= 25 °C
T
j
= 125 °C
T
j
= 125 °C
T
j
= 25 °C
T
j
= 125 °C
MAX.
Characteristics
Value
1.4
Unit
V
1.7
MAX.
MAX.
MAX.
MAX.
0.9
80
20
500
V
mΩ
µA
µA
1. For both polarities of OUT pin referenced to COM pin
Table 5. Thermal resistances
Symbol
Parameter
TO-220AB
TO-220FPAB
I
2
PAK
Junction to ambient (soldered on 1 cm
2
copper pad)
D
2
PAK
TO-220FPAB
R
th(j-c)
Junction to case for full cycle sine wave conduction
TO-220AB
D
2
PAK , I
2
PAK
Value
60
65
45
4.25
°C/W
2.5
°C/W
Unit
Junction to ambient
Rt
h(j-a)
Figure 2. Maximum power dissipation versus
RMS on-state current
8
7
6
Figure 3. On-state RMS current versus case
temperature (full cycle)
IT(RMS)(A)
α
= 180°
P(W)
α
= 180°
180°
7
6
5
TO-220FPAB
5
4
4
3
2
1
0
IT(RMS)(A)
TO-220AB
D²PAK
I²PAK
3
2
1
0
TC(°C)
0
1
2
3
4
5
6
0
25
50
75
100
125
DocID7297 Rev 11
3/20
20
Characteristics
ACST6
Figure 4. On-state rms current versus ambient
temperature
(free air convection, full cycle)
IT(RMS)(A)
2.5
D
2
PAK with
copper
surface = 1
cm
2
Figure 5. Relative variation of thermal
impedance versus pulse duration
1.0E+00
α=180°
K = [Zth / Rth]
Zth(j-c)
Zth(j-a)
2.0
1.5
TO-220FPAB
TO220AB
I
2
PAK
TO-220AB
D²PAK
I²PAK
1.0E-01
1.0
TO-220FPAB
0.5
0.0
0
25
50
Ta(°C)
75
100
125
1.0E-02
1.0E-03
tp(s)
1.0E-01
1.0E+01
1.0E+03
Figure 6. Relative variation of gate trigger
current (I
GT
) and voltage (V
GT
) versus junction
temperature (typical values)
3.0
2.5
2.0
1.5
Figure 7. Relative variation of holding current
(I
H
) and latching current (I
L
) versus junction
temperature (typical values)
2.5
I GT , V GT [T j ] / I GT , V GT [T j = 25 °C ]
I GT Q3
I H , I L [T j ] / I H , I L [T j = 25 °C ]
2.0
I GT Q1-Q 2
1.5
1.0
1.0
0.5
0.0
-50
V
GT
Q 1-Q2-Q 3
0.5
IL
IH
T j (°C )
-50
-25
0
25
50
75
100
125
T j (°C )
-25
0
25
50
75
100
125
0.0
Figure 8. Surge peak on-state current
versus number of cycles
50
Figure 9. Non repetitive surge peak on-state
current versus sinusoidal pulse width
1000
ITSM(A)
I TSM (A), I2t (A2s)
dl /dt limitation: 100 A / μs
T j initial = 25 °C
40
t = 20 ms
One cycle
100
I TS M
30
Non repetitive
Tj initial = 25 °C
Repetitive
TC =106 °C
Number of cycles
20
10
10
Number of cycles
0
1
10
100
1000
tp (ms)
1
0.01
0.10
1.00
10.00
4/20
DocID7297 Rev 11
ACST6
Characteristics
Figure 10. On-state characteristics
(maximum values)
Figure 11. Relative variation of critical rate of
decrease of main current (dI/dt)
c
versus
junction temperature
8
7
6
5
100
ITM(A)
(dl/dt)c [Tj] / (dl/dt)c[Tj = 125 °C]
10
Tjmax:
Vto = 0.90 V
Rd = 80 mΩ
Tj = 125 °C
4
3
2
Tj = 25 °C
VTM(V)
1
0
5
25
50
Tj(°C)
75
100
125
1
0
1
2
3
4
Figure 12. Relative variation of static dV/dt
immunity versus junction temperature (gate
open)
6
5
4
3
2
1
0
25
50
75
100
Figure 13. Relative variation of leakage current
versus junction temperature
dV/dt [Tj] / dV/dt [Tj = 125 °C]
VD = VR = 536 V
IDRM/IRRM [Tj; VDRM / VRRM] / IDRM/IRRM[Tj = 125 °C; 800 V]
1.0E+00
VDRM = VRRM = 800V
Different blocking voltages
1.0E-01
VDRM = VRRM = 600 V
1.0E-02
VDRM = VRRM = 200 V
Tj(°C)
125
1.0E-03
25
50
75
100
Tj(°C)
125
Figure 14. Relative variation of clamping
voltage (V
CL
) versus junction temperature
(minimum values)
1.15
Figure 15. Thermal resistance junction to
ambient versus copper surface under tab
V
CL
[Tj] / V
CL
[Tj = 25 °C]
1.10
1.05
1.00
0.95
0.90
Tj(°C)
0.85
-50
-25
0
25
50
75
100
125
DocID7297 Rev 11
5/20
20