HGTP5N120CN, HGT1S5N120CNS
Data Sheet
January 2000
File Number
4596.2
25A, 1200V, NPT Series N-Channel IGBT
The HGTP5N120CN and HGT1S5N120CNS are
Non-Punch
Through
(NPT) IGBT designs. They are new members of the
MOS gated high voltage switching IGBT family. IGBTs
combine the best features of MOSFETs and bipolar
transistors. This device has the high input impedance of a
MOSFET and the low on-state conduction loss of a bipolar
transistor.
The IGBT is ideal for many high voltage switching
applications operating at moderate frequencies where low
conduction losses are essential, such as: AC and DC motor
controls, power supplies and drivers for solenoids, relays
and contactors.
Formerly Developmental Type TA49309.
Features
• 25A, 1200V, T
C
= 25
o
C
• 1200V Switching SOA Capability
• Typical Fall Time. . . . . . . . . . . . . . . . 350ns at T
J
= 150
o
C
• Short Circuit Rating
• Low Conduction Loss
• Avalanche Rated
•
Temperature Compensating
SABER™
Model
Thermal Impedance
SPICE Model
www.intersil.com
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Ordering Information
PART NUMBER
HGTP5N120CN
HGT1S5N120CNS
PACKAGE
TO-220AB
TO-263AB
BRAND
G5N120CN
Packaging
JEDEC TO-220AB ALTERNATE VERSION
E
C
G5N120CN
G
NOTE: When ordering, use the entire part number. Add the suffix 9A
to obtain the TO-263AB variant in Tape and Reel, i.e.,
HGT1S5N120CNS9A.
COLLECTOR
(FLANGE)
Symbol
C
JEDEC TO-263AB
G
COLLECTOR
(FLANGE)
E
G
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS
4,364,073
4,598,461
4,682,195
4,803,533
4,888,627
4,417,385
4,605,948
4,684,413
4,809,045
4,890,143
4,430,792
4,620,211
4,694,313
4,809,047
4,901,127
4,443,931
4,631,564
4,717,679
4,810,665
4,904,609
4,466,176
4,639,754
4,743,952
4,823,176
4,933,740
4,516,143
4,639,762
4,783,690
4,837,606
4,963,951
4,532,534
4,641,162
4,794,432
4,860,080
4,969,027
4,587,713
4,644,637
4,801,986
4,883,767
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
1-888-INTERSIL or 321-724-7143
|
Copyright
©
Intersil Corporation 2000
SABER™ is a trademark of Analogy, Inc.
HGTP5N120CN, HGT1S5N120CNS
Absolute Maximum Ratings
T
C
= 25
o
C, Unless Otherwise Specified
HGTP5N120CN
HGT1S5N120CNS
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV
CES
Collector Current Continuous
At T
C
= 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C25
At T
C
= 110
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C110
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
CM
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GES
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GEM
Switching Safe Operating Area at T
J
= 150
o
C, Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . SSOA
Power Dissipation Total at T
C
= 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
Power Dissipation Derating T
C
> 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Forward Voltage Avalanche Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
AV
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T
J
, T
STG
Maximum Lead Temperature for Soldering
Leads at 0.063in (1.6mm) from case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
L
Package Body for 10s, see Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
pkg
Short Circuit Withstand Time (Note 2) at V
GE
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t
SC
Short Circuit Withstand Time (Note 2) at V
GE
= 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t
SC
1200
25
12
40
±20
±30
30A at 1200V
167
1.33
36
-55 to 150
300
260
8
15
UNITS
V
A
A
A
V
V
W
W/
o
C
mJ
o
C
o
C
o
C
µs
µs
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Pulse width limited by maximum junction temperature.
2. V
CE(PK)
= 840V, T
J
= 125
o
C, R
G
= 25Ω.
Electrical Specifications
PARAMETER
T
C
= 25
o
C, Unless Otherwise Specified
SYMBOL
BV
CES
BV
ECS
I
CES
TEST CONDITIONS
I
C
= 250µA, V
GE
= 0V
I
C
= 10mA, V
GE
= 0V
V
CE
= BV
CES
T
C
= 25
o
C
T
C
= 125
o
C
T
C
= 150
o
C
MIN
1200
15
-
-
-
-
-
6.0
-
25
TYP
-
-
-
100
-
2.1
2.9
7.0
-
-
MAX
-
-
250
-
2
2.4
3.5
-
±250
-
UNITS
V
V
µA
µA
mA
V
V
V
nA
A
Collector to Emitter Breakdown Voltage
Emitter to Collector Breakdown Voltage
Collector to Emitter Leakage Current
Collector to Emitter Saturation Voltage
V
CE(SAT)
I
C
= 5.5A,
V
GE
= 15V
T
C
= 25
o
C
T
C
= 150
o
C
Gate to Emitter Threshold Voltage
Gate to Emitter Leakage Current
Switching SOA
V
GE(TH)
I
GES
SSOA
I
C
= 45µA, V
CE
= V
GE
V
GE
=
±20V
T
J
= 150
o
C, R
G
= 25Ω, V
GE
= 15V,
L = 200µH, V
CE(PK)
= 1200V
I
C
= 5.5A, V
CE
= 0.5 BV
CES
I
C
= 5.5A,
V
CE
= 0.5 BV
CES
V
GE
= 15V
V
GE
= 20V
Gate to Emitter Plateau Voltage
On-State Gate Charge
V
GEP
Q
G(ON)
-
-
-
10.6
45
60
-
55
75
V
nC
nC
2
HGTP5N120CN, HGT1S5N120CNS
Electrical Specifications
PARAMETER
Current Turn-On Delay Time
Current Rise Time
Current Turn-Off Delay Time
Current Fall Time
Turn-On Energy (Note 3)
Turn-On Energy (Note 3)
Turn-Off Energy (Note 4)
Current Turn-On Delay Time
Current Rise Time
Current Turn-Off Delay Time
Current Fall Time
Turn-On Energy (Note 3)
Turn-On Energy (Note 3)
Turn-Off Energy (Note 4)
Thermal Resistance Junction To Case
NOTES:
3. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E
ON1
is the turn-on loss of the IGBT only. E
ON2
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T
J
as the IGBT. The diode type is specified in
Figure 18.
4. Turn-Off Energy Loss (E
OFF
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending
at the point where the collector current equals zero (I
CE
= 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.
T
C
= 25
o
C, Unless Otherwise Specified
(Continued)
SYMBOL
t
d(ON)I
t
rI
t
d(OFF)I
t
fI
E
ON1
E
ON2
E
OFF
t
d(ON)I
t
rI
t
d(OFF)I
t
fI
E
ON1
E
ON2
E
OFF
R
θJC
IGBT and Diode at T
J
= 150
o
C
I
CE
= 5.5A
V
CE
= 0.8 BV
CES
V
GE
= 15V
R
G
= 25Ω
L = 5mH
Test Circuit (Figure 18)
TEST CONDITIONS
IGBT and Diode at T
J
= 25
o
C
I
CE
= 5.5A
V
CE
= 0.8 BV
CES
V
GE
= 15V
R
G
= 25Ω
L = 5mH
Test Circuit (Figure 18)
MIN
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TYP
22
12
180
280
220
400
640
20
12
225
350
220
1
1
-
MAX
30
16
250
350
-
500
700
25
16
300
400
-
1.2
1.1
0.75
UNITS
ns
ns
ns
ns
µJ
µJ
µJ
ns
ns
ns
ns
µJ
mJ
mJ
o
C/W
Typical Performance Curves
25
I
CE
, DC COLLECTOR CURRENT (A)
Unless Otherwise Specified
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
35
30
25
20
15
10
5
0
V
GE
= 15V
T
J
= 150
o
C, R
G
= 25Ω, V
GE
= 15V, L = 200µH
20
15
10
5
0
25
50
75
100
125
150
0
200
400
600
800
1000
1200
1400
T
C
, CASE TEMPERATURE (
o
C)
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 1. DC COLLECTOR CURRENT vs CASE
TEMPERATURE
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA
3
HGTP5N120CN, HGT1S5N120CNS
Typical Performance Curves
f
MAX
, OPERATING FREQUENCY (kHz)
200
Unless Otherwise Specified
(Continued)
t
SC
, SHORT CIRCUIT WITHSTAND TIME (µs)
T
J
= 150
o
C, R
G
= 25Ω, L = 5mH, V
CE
= 960V
T
C
75
o
C
75
o
C
110
o
C
110
o
C
V
GE
15V
12V
15V
12V
35
V
CE
= 840V, R
G
= 25Ω, T
J
= 125
o
C
100
30
60
I
SC
50
50
25
T
C
= 75
o
C, V
GE
= 5V
IDEAL DIODE
f
MAX1
= 0.05 / (t
d(OFF)I
+ t
d(ON)I
)
f
MAX2
= (P
D
- P
C
) / (E
ON2
+ E
OFF
)
P
C
= CONDUCTION DISSIPATION
(DUTY FACTOR = 50%)
R
ØJC
= 0.75
o
C/W, SEE NOTES
1
2
3
5
10
20
40
20
15
t
SC
10
10
30
10
11
12
13
14
15
20
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
V
GE
, GATE TO EMITTER VOLTAGE (V)
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO
EMITTER CURRENT
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
35
30
25
20
15
80
70
60
50
40
30
20
10
0
0
2
4
6
T
C
= 25
o
C
T
C
= -55
o
C
T
C
= 150
o
C
DUTY CYCLE < 0.5%, V
GE
= 15V
250µs PULSE TEST
DUTY CYCLE < 0.5%, V
GE
= 12V
250µs PULSE TEST
T
C
= -55
o
C
T
C
= 150
o
C
T
C
= 25
o
C
10
5
0
0
1
2
3
4
5
6
7
8
9
10
8
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE
3000
E
ON2
, TURN-ON ENERGY LOSS (mJ)
R
G
= 25Ω, L = 5mH, V
CE
= 960V
2500
T
J
= 150
o
, V
GE
= 15V, V
GE
= 12V
2000
1500
1000
500
T
J
= 25
o
C, V
GE
= 15V, V
GE
= 12V
0
2
3
4
5
6
7
8
9
10
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
E
OFF
, TURN-OFF ENERGY LOSS (µJ)
1750
R
G
= 25Ω, L = 5mH, V
CE
= 960V
1500
T
J
= 150
o
C, V
GE
= 12V OR 15V
1250
1000
750
500
T
J
= 25
o
C, V
GE
= 12V OR 15V
250
0
1
2
3
4
5
6
7
8
9
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
4
I
SC
, PEAK SHORT CIRCUIT CURRENT (A)
10
10
70
HGTP5N120CN, HGT1S5N120CNS
Typical Performance Curves
40
t
dI
, TURN-ON DELAY TIME (ns)
R
G
= 25Ω, L = 5mH, V
CE
= 960V
Unless Otherwise Specified
(Continued)
40
35
R
G
= 25Ω, L = 5mH, V
CE
= 960V
35
t
rI
, RISE TIME (ns)
30
25
20
15
10
0
T
J
= 25
o
C, T
J
= 150
o
C, V
GE
= 12V
30
T
J
= 25
o
C, T
J
= 150
o
C, V
GE
= 12V
25
20
T
J
= 25
o
C, T
J
= 150
o
C, V
GE
= 15V
15
2
3
4
5
6
7
8
9
10
T
J
= 25
o
C, T
J
= 150
o
C, V
GE
= 15V
2
3
4
5
6
7
8
9
10
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO
EMITTER CURRENT
600
t
d(OFF)I
, TURN-OFF DELAY TIME (ns)
500
R
G
= 25Ω, L = 5mH, V
CE
= 960V
900
R
G
= 25Ω, L = 5mH, V
CE
= 960V
800
t
fI
, FALL TIME (ns)
700
600
500
400
300
T
J
= 25
o
C, V
GE
= 12V AND 15V
T
J
= 150
o
C, V
GE
= 12V AND 15V
400
300
200
100
T
J
= 25
o
C, V
GE
= 12V, V
GE
= 15V
0
1
2
3
4
5
6
7
8
9
10
T
J
= 150
o
C, V
GE
= 12V, V
GE
= 15V
200
100
1
2
3
4
5
6
7
8
9
10
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER
CURRENT
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
90
80
70
60
50
40
30
20
10
0
6
DUTY CYCLE < 0.5%, V
CE
= 20V
250µs PULSE TEST
T
C
= 25
o
C
V
GE
, GATE TO EMITTER VOLTAGE (V)
100
16
14
12
10
8
6
4
2
0
7
8
9
10
11
12
13
14
15
16
V
CE
= 400V
V
CE
= 800V
V
CE
= 1200V
T
C
= -55
o
C
T
C
= 150
o
C
I
G(REF)
= 1mA, R
L
= 120Ω, T
C
= 25
o
C
0
10
20
30
40
50
60
V
GE
, GATE TO EMITTER VOLTAGE (V)
Q
G
, GATE CHARGE (nC)
FIGURE 13. TRANSFER CHARACTERISTIC
FIGURE 14. GATE CHARGE WAVEFORMS
5