首页 > 器件类别 > 分立半导体 > 晶体管

MAX2601ESA+T

射频(RF)双极晶体管 3.6V 1W RF Pwr Trans for 900MHz Ap

器件类别:分立半导体    晶体管   

厂商名称:Maxim(美信半导体)

厂商官网:https://www.maximintegrated.com/en.html

器件标准:

下载文档
器件参数
参数名称
属性值
是否无铅
不含铅
是否Rohs认证
符合
厂商名称
Maxim(美信半导体)
零件包装代码
SOT
包装说明
SMALL OUTLINE, R-PDSO-G10
针数
8
Reach Compliance Code
compliant
ECCN代码
EAR99
Factory Lead Time
6 weeks
最大集电极电流 (IC)
1.2 A
集电极-发射极最大电压
15 V
配置
SINGLE
最小直流电流增益 (hFE)
100
最高频带
ULTRA HIGH FREQUENCY BAND
JESD-30 代码
R-PDSO-G10
JESD-609代码
e3
湿度敏感等级
1
元件数量
1
端子数量
10
最高工作温度
150 °C
封装主体材料
PLASTIC/EPOXY
封装形状
RECTANGULAR
封装形式
SMALL OUTLINE
峰值回流温度(摄氏度)
260
极性/信道类型
NPN
认证状态
Not Qualified
表面贴装
YES
端子面层
Matte Tin (Sn)
端子形式
GULL WING
端子位置
DUAL
处于峰值回流温度下的最长时间
30
晶体管应用
AMPLIFIER
晶体管元件材料
SILICON
文档预览
19-1185; Rev 3; 9/08
KIT
ATION
EVALU
E
BL
AVAILA
3.6V, 1W RF Power Transistors
for 900MHz Applications
____________________________Features
Low Voltage: Operates from 1 Li-Ion or
3 NiCd/NiMH Batteries
DC-to-Microwave Operating Range
1W Output Power at 900MHz
On-Chip Diode for Accurate Biasing (MAX2602)
Low-Cost Silicon Bipolar Technology
Does Not Require Negative Bias or Supply Switch
High Efficiency: 58%
General Description
The MAX2601/MAX2602 are RF power transistors opti-
mized for use in portable cellular and wireless equipment
that operates from three NiCd/NiMH cells or one Li-Ion
cell. These transistors deliver 1W of RF power from a
3.6V supply with efficiency of 58% when biased for con-
stant-envelope applications (e.g., FM or FSK). For NADC
(IS-54) operation, they deliver 29dBm with -28dBc ACPR
from a 4.8V supply.
The MAX2601 is a high-performance silicon bipolar RF
power transistor. The MAX2602 includes a high-
performance silicon bipolar RF power transistor, and a
biasing diode that matches the thermal and process
characteristics of the power transistor. This diode is
used to create a bias network that accurately controls
the power transistor’s collector current as the tempera-
ture changes.
The MAX2601/MAX2602 can be used as the final stage
in a discrete or module power amplifier. Silicon bipolar
technology eliminates the need for voltage inverters
and sequencing circuitry, as required by GaAsFET
power amplifiers. Furthermore, a drain switch is not
required to turn off the MAX2601/MAX2602. This
increases operating time in two ways: it allows lower
system end-of-life battery voltage, and it eliminates the
wasted power from a drain-switch device.
The MAX2601/MAX2602 are available in thermally
enhanced, 8-pin SO packages, which are screened to
the extended temperature range (-40°C to +85°C).
MAX2601/MAX2602
Ordering Information
PART
MAX2601ESA
MAX2602ESA
TEMP RANGE
-40°C to +85°C
-40°C to +85°C
PIN-PACKAGE
8 SOIC
8 SOIC
________________________Applications
Narrow-Band PCS (NPCS)
915MHz ISM Transmitters
Microcellular GSM (Power Class 5)
AMPS Cellular Phones
Digital Cellular Phones
Two-Way Paging
CDPD Modems
Land Mobile Radios
C
E
E
B
1
2
3
4
8
7
6
5
Pin Configurations
TOP VIEW
C
E
E
B
C
E
BIAS
B
1
2
3
4
8
7
6
5
C
E
E
B
MAX2601
PSOPII
MAX2602
PSOPII
Typical Application Circuit appears at end of data sheet.
________________________________________________________________
Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
3.6V, 1W RF Power Transistors
for 900MHz Applications
MAX2601/MAX2602
ABSOLUTE MAXIMUM RATINGS
Collector-Emitter Voltage, Shorted Base (V
CES
) ....................17V
Emitter Base Reverse Voltage (V
EBO
)...................................2.3V
BIAS Diode Reverse Breakdown Voltage (MAX2602) ..........2.3V
Average Collector Current (I
C
)........................................1200mA
Continuous Power Dissipation (T
A
= +70°C)
SOIC (derate 80mW/°C above +70°C) (Note 1) .............6.4W
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +165°C
Junction Temperature ......................................................+150°C
Lead Temperature (soldering, 10s) .................................+300°C
Note 1:
Backside slug must be properly soldered to ground plane (see
Slug Layout Techniques
section).
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(T
A
= T
MIN
to T
MAX
, unless otherwise noted.)
PARAMETER
Collector-Emitter Breakdown
Voltage
Collector-Emitter Sustaining
Voltage
Collector-Base Breakdown
Voltage
DC Current Gain
Collector Cutoff Current
Output Capacitance
SYMBOL
BV
CEO
BV
CES
LV
CEO
BV
CBO
h
FE
I
CES
C
OB
I
C
< 100µA
I
C
= 200mA
I
C
< 100µA, emitter open
I
C
= 250mA, V
CE
= 3V
V
CE
= 6V, V
BE
= 0V
V
CB
= 3V, I
E
= 0mA, f = 1MHz
CONDITIONS
Open base
Shorted base
MIN
15
15
5.0
15
100
0.05
9.6
1.5
µA
pF
TYP
MAX
UNITS
V
V
V
AC ELECTRICAL CHARACTERISTICS
(Test Circuit of Figure 1, V
CC
= 3.6V, V
BB
= 0.750V, Z
LOAD
= Z
SOURCE
= 50Ω, P
OUT
= 30dBm, f = 836MHz, T
A
= +25°C, unless oth-
erwise noted.)
PARAMETER
Frequency Range
Base Current
Harmonics
Power Gain
Collector Efficiency
Stability under Continuous
Load Mismatch Conditions
Two-Tone IMR
Noise Figure
η
V
SWR
IM3
IM5
NF
SYMBOL
f
I
B
2fo, 3fo
V
CC
= 3.6V, P
OUT
= 30dBm
V
CC
= 3.0V, P
OUT
= 29dBm
P
OUT
= 30dBm
No modulation
V
CC
= 5.5V, all angles (Note 3)
P
OUT
= +30dBm total power, f1 = 835MHz,
f2 = 836MHz
V
BB
= 0.9V
(Note 2)
CONDITIONS
MIN
DC
4.2
-43
-42
11.6
58
8:1
-16
-25
3.3
dBc
dB
TYP
MAX
1
UNITS
GHz
mA
dBc
dBc
dB
%
Note 2:
Guaranteed by design.
Note 3:
Under these conditions: a) no spurious oscillations shall be observed at collector greater than -60dBc; b) no parametric
degradation is observable when mismatch is removed; and c) no current draw in excess of the package dissipation
capability is observed.
2
_______________________________________________________________________________________
3.6V, 1W RF Power Transistors
for 900MHz Applications
__________________________________________Typical Operating Characteristics
(Test Circuit of Figure 1, input/output matching networks optimized for specific measurement frequency, V
CC
= 3.6V, V
BB
= 0.750V,
P
OUT
= 30dBm, Z
LOAD
= Z
SOURCE
= 50Ω, f = 836MHz, T
A
= +25°C, unless otherwise noted.)
TWO-TONE OUTPUT POWER AND IM3
vs. COLLECTOR CURRENT
MAX2601-02
MAX2601-01
MAX2601/MAX2602
COLLECTOR CURRENT
1.0
31
TWO-TONE OUTPUT POWER, IM3, IM5
vs. INPUT POWER
P
OUT
, IM3, AND IM5
ARE RMS COMPOSITE
TWO-TONE POWER
LEVELS
P
OUT
MAX2601-03
20
0.8
V
BB
= 1.00V
V
BB
= 0.95V
V
BB
= 0.90V
P
OUT
(dBm)
P
OUT
, IM3, AND IM5
ARE RMS COMPOSITE
TWO-TONE POWER LEVELS
30
35
P
OUT
I
CC
(A)
0.6
P
OUT
, IM3, IM5 (dBm)
19
25
29
IM3
28
18
15
IM3
0.4
17
0.2
5
IM5
V
BB
= 0.85V
V
BB
= 0.80V
27
6
0.4
0.5
0.6
I
CC
(A)
0.7
0.8
16
-5
5
10
15
INPUT POWER (dBm)
20
25
0
0
1
2
3
V
CE
(V)
4
5
TWO-TONE OUTPUT POWER, IM3, IM5
vs. INPUT POWER (f = 433MHz)
MAX2601-04
ACPR vs. OUTPUT POWER
(IS-54
π/4
DQPSK MODULATION, V
BB
= 0.85V)
MAX2601-05
COLLECTOR EFFICIENCY vs. OUTPUT POWER
(IS-54
π/4
DQPSK MODULATION, V
BB
= 0.85V)
P
OUT
, IM3, AND IM5
ARE RMS COMPOSITE
TWO-TONE POWER
LEVELS
3.0V
MAX2601-06
35
P
OUT
25
P
OUT
, IM3, AND IM5
ARE RMS COMPOSITE
TWO-TONE
POWER LEVELS
-20
-22
-24
3.0V
60
50
EFFICIENCY (%)
40
30
20
4.8V
10
0
P
OUT
, IM3, IM5 (dBm)
-26
ACPR (dBc)
IM3
-28
-30
-32
-34
-36
-38
4.8V
4.2V
3.6V
15
3.6V
4.2V
IM5
5
-5
5
10
15
INPUT POWER (dBm)
20
25
-40
10
15
20
25
30
35
OUTPUT POWER (dBm)
10
15
20
25
30
35
OUTPUT POWER (dBm)
______________________________________________________________Pin Description
PIN
NAME
MAX2601
1, 8
2, 3, 6, 7, Slug
MAX2602
1, 8
2, 6, 7, Slug
C
E
Transistor Collector
Transistor Emitter
Anode of the Biasing Diode that matches the thermal and process char-
acteristics of the power transistor. Requires a high-RF-impedance, low-
DC-impedance (e.g., inductor) connection to the transistor base (Pin 4).
Current through the biasing diode (into Pin 3) is proportional to 1/15 the
collector current in the transistor.
Transistor Base
3
FUNCTION
3
BIAS
4, 5
4, 5
B
_______________________________________________________________________________________
3.6V, 1W RF Power Transistors
for 900MHz Applications
MAX2601/MAX2602
V
CC
V
BB
0.1μF
1000pF
100nH
24Ω
1
4
RF
IN
T1
1000pF
5
2pF
12pF
2, 6, 7
BACKSIDE
SLUG
8
10pF
1000pF
T2
1000pF
L1
0.1μF
2pF
L1 = COILCRAFT A05T INDUCTOR, 18.5nH
T1, T2 = 1", 50Ω TRANSMISSION LINE ON FR-4
Figure 1. Test Circuit
_______________Detailed Description
MAX2601/MAX2602
The MAX2601/MAX2602 are high-performance silicon
bipolar transistors in power-enhanced, 8-pin SO pack-
ages. The base and collector connections use two pins
each to reduce series inductance. The emitter connects
to three (MAX2602) or four (MAX2601) pins in addition
to a back-side heat slug, which solders directly to the
PC board ground to reduce emitter inductance and
improve thermal dissipation. The transistors are intend-
ed to be used in the common-emitter configuration for
maximum
power
gain
and
power-added
efficiency.
V
CC
V
CC
R
BIAS
RF
C
RF
OUT
C
OUT
RF
C
Q1
C
BIAS
C
IN
RF
IN
Q2
Current Mirror Bias
(MAX2602 only)
The MAX2602 includes a high-performance silicon
bipolar RF power transistor and a thermally matched
biasing diode that matches the power transistor’s ther-
mal and process characteristics. This diode is used to
create a bias network that accurately controls the
power transistor’s collector current as the temperature
changes (Figure 2).
The biasing diode is a scaled version of the power tran-
sistor’s base-emitter junction, in such a way that the
current through the biasing diode is 1/15 the quiescent
collector current of the RF power transistor. Supplying
the biasing diode with a constant current source and
connecting the diode’s anode to the RF power transis-
tor’s base ensures that the RF power transistor’s quies-
cent collector current remains constant through
4
Figure 2. Bias Diode Application
temperature variations. Simply tying the biasing diode
to the supply through a resistor is adequate in most sit-
uations. If large supply variations are anticipated, con-
nect the biasing diode to a reference voltage through a
resistor, or use a stable current source. Connect the
biasing diode to the base of the RF power transistor
through a large RF impedance, such as an RF choke
(inductor), and decouple to ground through a surface-
mount chip capacitor larger than 1000pF.
_______________________________________________________________________________________
3.6V, 1W RF Power Transistors
for 900MHz Applications
Applications Information
Optimum Port Impedance
The source and load impedances presented to the
MAX2601/MAX2602 have a direct impact upon its gain,
output power, and linearity. Proper source- and load-
terminating impedances (Z
S
and Z
L
) presented to the
power transistor base and collector will ensure optimum
performance.
For a power transistor, simply applying the conjugate of
the transistor’s input and output impedances calculated
from small-signal S-parameters will yield less than opti-
mum device performance.
For maximum efficiency at V
BB
= 0.75V and V
CC
=
3.6V, the optimum power-transistor source and load
impedances (as defined in Figure 3) are:
At 836MHz: Z
S
= 5.5 + j2.0
Z
L
= 6.5 + j1.5
At 433MHz: Z
S
= 9.5 - j2.5
Z
L
= 8.5 - j1.5
Z
S
and Z
L
reflect the impedances that should be pre-
sented to the transistor’s base and collector. The pack-
age parasitics are dominated by inductance (as shown
in Figure 3), and need to be accounted for when calcu-
lating Z
S
and Z
L
.
The internal bond and package inductances shown
in Figure 3 should be included as part of the end-
application matching network, depending upon exact
layout topology.
Slug Layout Techniques
The most important connection to make to the
MAX2601/MAX2602 is the back side. It should connect
directly to the PC board ground plane if it is on the top
side, or through numerous plated through-holes if the
ground plane is buried. For maximum gain, this con-
nection should have very little self-inductance. Since it
is also the thermal path for heat dissipation, it must
have low thermal impedance, and the ground plane
should be large.
MAX2601/MAX2602
4
3
2
1
2.8nH
MAX2601
MAX2602
2.8nH
2.8nH
Z
S
Z
L
2.8nH
5
6
7
8
Figure 3. Optimum Port Impedance
Package Information
For the latest package outline information and land patterns, go
to
www.maxim-ic.com/packages.
PACKAGE TYPE
8 SOIC
PACKAGE CODE
S8E-12
DOCUMENT NO.
21-0041
_______________________________________________________________________________________
5
查看更多>
参数对比
与MAX2601ESA+T相近的元器件有:MAX2601ESA+。描述及对比如下:
型号 MAX2601ESA+T MAX2601ESA+
描述 射频(RF)双极晶体管 3.6V 1W RF Pwr Trans for 900MHz Ap 射频(RF)双极晶体管 3.6V 1W RF Pwr Trans for 900MHz Ap
是否无铅 不含铅 不含铅
是否Rohs认证 符合 符合
厂商名称 Maxim(美信半导体) Maxim(美信半导体)
零件包装代码 SOT SOT
包装说明 SMALL OUTLINE, R-PDSO-G10 SMALL OUTLINE, R-PDSO-G8
针数 8 8
Reach Compliance Code compliant compliant
ECCN代码 EAR99 EAR99
Factory Lead Time 6 weeks 6 weeks
最大集电极电流 (IC) 1.2 A 1.2 A
集电极-发射极最大电压 15 V 15 V
配置 SINGLE SINGLE
最小直流电流增益 (hFE) 100 100
最高频带 ULTRA HIGH FREQUENCY BAND ULTRA HIGH FREQUENCY BAND
JESD-30 代码 R-PDSO-G10 R-PDSO-G8
JESD-609代码 e3 e3
湿度敏感等级 1 1
元件数量 1 1
端子数量 10 8
最高工作温度 150 °C 150 °C
封装主体材料 PLASTIC/EPOXY PLASTIC/EPOXY
封装形状 RECTANGULAR RECTANGULAR
封装形式 SMALL OUTLINE SMALL OUTLINE
峰值回流温度(摄氏度) 260 260
极性/信道类型 NPN NPN
认证状态 Not Qualified Not Qualified
表面贴装 YES YES
端子面层 Matte Tin (Sn) Matte Tin (Sn)
端子形式 GULL WING GULL WING
端子位置 DUAL DUAL
处于峰值回流温度下的最长时间 30 30
晶体管应用 AMPLIFIER AMPLIFIER
晶体管元件材料 SILICON SILICON
热门器件
热门资源推荐
器件捷径:
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR AS AT AU AV AW AX AY AZ B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF BG BH BI BJ BK BL BM BN BO BP BQ BR BS BT BU BV BW BX BY BZ C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF CG CH CI CJ CK CL CM CN CO CP CQ CR CS CT CU CV CW CX CY CZ D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF DG DH DI DJ DK DL DM DN DO DP DQ DR DS DT DU DV DW DX DZ
需要登录后才可以下载。
登录取消