MC74LCX541
Low-Voltage CMOS Octal
Buffer Flow Through Pinout
With 5 V−Tolerant Inputs and Outputs
(3−State, Non−Inverting)
The MC74LCX541 is a high performance, non−inverting octal
buffer operating from a 2.3 to 3.6 V supply. This device is similar in
function to the MC74LCX244, while providing flow through
architecture. High impedance TTL compatible inputs significantly
reduce current loading to input drivers while TTL compatible outputs
offer improved switching noise performance. A V
I
specification of
5.5 V allows MC74LCX541 inputs to be safely driven from 5 V
devices. The MC74LCX541 is suitable for memory address driving
and all TTL level bus oriented transceiver applications.
Current drive capability is 24 mA at the outputs. The Output Enable
(OE1. OE2) inputs, when HIGH, disables the output by placing them
in a HIGH Z condition.
Features
http://onsemi.com
MARKING
DIAGRAMS
20
1
SOIC−20 WB
DW SUFFIX
CASE 751D
20
LCX541
AWLYYWWG
1
20
1
TSSOP−20
DT SUFFIX
CASE 948E
A
L, WL
Y, YY
W, WW
G or
G
=
=
=
=
=
20
LCX
541
ALYW
G
G
1
Assembly Location
Wafer Lot
Year
Work Week
Pb−Free Package
•
•
•
•
•
•
•
•
Designed for 2.3 to 3.6 V V
CC
Operation
5 V Tolerant
−
Interface Capability With 5 V TTL Logic
Supports Live Insertion and Withdrawal
I
OFF
Specification Guarantees High Impedance When V
CC
= 0 V
LVTTL Compatible
LVCMOS Compatible
24 mA Balanced Output Sink and Source Capability
Near Zero Static Supply Current in All Three Logic States (10
mA)
Substantially Reduces System Power Requirements
•
Latchup Performance Exceeds 500 mA
•
ESD Performance:
♦
Human Body Model >2000 V
♦
Machine Model >200 V
•
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 3 of this data sheet.
©
Semiconductor Components Industries, LLC, 2012
July, 2012
−
Rev. 7
1
Publication Order Number:
MC74LCX541/D
MC74LCX541
OE1
V
CC
20
OE2
19
O0
18
O1
17
O2
16
O3
15
O4
14
O5
13
O6
12
O7
11
OE2
1
19
2
18
O0
D0
D1
3
17
O1
D2
1
OE1
2
D0
3
D1
4
D2
5
D3
6
D4
7
D5
8
D6
9
D7
10
GND
D3
4
16
O2
5
15
O3
Figure 1. Pinout: 20−Lead
(Top View)
D4
6
14
O4
D5
7
13
O5
PIN NAMES
Pins
OEn
Dn
On
Function
Output Enable Inputs
Data Inputs
3−State Outputs
D7
D6
8
12
O6
9
11
O7
Figure 2. Logic Diagram
TRUTH TABLE
Inputs
OE1
L
L
X
H
OE2
L
L
H
X
Dn
L
H
X
X
Outputs
On
L
H
Z
Z
H = High Voltage Level; L = Low Voltage Level; Z = High Impedance State;
X = High or Low Voltage Level and Transitions are Acceptable, for I
CC
reasons,
DO NOT FLOAT Inputs
http://onsemi.com
2
MC74LCX541
MAXIMUM RATINGS
Symbol
V
CC
V
I
V
O
I
IK
I
OK
I
O
I
CC
I
GND
T
STG
MSL
Parameter
DC Supply Voltage
DC Input Voltage
DC Output Voltage
Value
−0.5
to +7.0
−0.5
≤
V
I
≤
+7.0
−0.5
≤
V
O
≤
+7.0
−0.5
≤
V
O
≤
V
CC
+ 0.5
DC Input Diode Current
DC Output Diode Current
−50
−50
+50
DC Output Source/Sink Current
DC Supply Current Per Supply Pin
DC Ground Current Per Ground Pin
Storage Temperature Range
Moisture Sensitivity
±50
±100
±100
−65
to +150
Level 1
Output in 3−State
(Note 1)
V
I
< GND
V
O
< GND
V
O
> V
CC
Condition
Units
V
V
V
V
mA
mA
mA
mA
mA
mA
°C
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
1. Output in HIGH or LOW State. I
O
absolute maximum rating must be observed.
RECOMMENDED OPERATING CONDITIONS
Symbol
V
CC
Supply Voltage
Operating
Data Retention Only
Input Voltage
Output Voltage
(HIGH or LOW State)
(3−State)
HIGH Level Output Current, V
CC
= 3.0 V
−
3.6 V
LOW Level Output Current, V
CC
= 3.0 V
−
3.6 V
HIGH Level Output Current, V
CC
= 2.7 V
−
3.0 V
LOW Level Output Current, V
CC
= 2.7 V
−
3.0 V
Operating Free−Air Temperature
Input Transition Rise or Fall Rate, V
IN
from 0.8 V to 2.0 V, V
CC
= 3.0 V
−40
0
Parameter
Min
2.0
1.5
0
0
0
Typ
3.3
3.3
Max
3.6
3.6
5.5
V
CC
5.5
−24
24
−12
12
+85
10
Units
V
V
I
V
O
V
V
I
OH
I
OL
I
OH
I
OL
T
A
Dt/DV
mA
mA
mA
mA
°C
ns/V
ORDERING INFORMATION
Device
MC74LCX541DWR2G
NLV74LCX541DWR2G*
MC74LCX541DWG
NLV74LCX541DWG*
MC74LCX541DTG
NLV74LCX541DTG*
MC74LCX541DTR2G
NLV74LCX541DTR2G*
Package
SOIC−20
(Pb−Free)
SOIC−20
(Pb−Free)
TSSOP−20
(Pb−Free)
TSSOP−20
(Pb−Free)
Shipping
†
1000 Tape & Reel
1000 Tape & Reel
38 Units / Rail
38 Units / Rail
75 Units / Rail
75 Units / Rail
2500 Tape & Reel
2500 Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
http://onsemi.com
3
MC74LCX541
DC ELECTRICAL CHARACTERISTICS
T
A
=
−40°C
to +85°C
Symbol
V
IH
V
IL
V
OH
Characteristic
HIGH Level Input Voltage (Note 2)
LOW Level Input Voltage (Note 2)
HIGH Level Output Voltage
Condition
2.7 V
≤
V
CC
≤
3.6 V
2.7 V
≤
V
CC
≤
3.6 V
2.7 V
≤
V
CC
≤
3.6 V; I
OH
=
−100
mA
V
CC
= 2.7 V; I
OH
=
−12
mA
V
CC
= 3.0 V; I
OH
=
−18
mA
V
CC
= 3.0 V; I
OH
=
−24
mA
V
OL
LOW Level Output Voltage
2.7 V
≤
V
CC
≤
3.6 V; I
OL
= 100
mA
V
CC
= 2.7 V; I
OL
= 12 mA
V
CC
= 3.0 V; I
OL
= 16 mA
V
CC
= 3.0 V; I
OL
= 24 mA
I
OZ
I
OFF
I
IN
I
CC
DI
CC
3−State Output Current
Power Off Leakage Current
Input Leakage Current
Quiescent Supply Current
Increase in I
CC
per Input
V
CC
= 3.6 V, V
IN
= V
IH
or V
IL
,
V
OUT
= 0 to 3.6 V
V
CC
= 0, V
IN
= 3.6 V or V
OUT
= 3.6 V
V
CC
= 0 to 3.6 V, V
IN
= 3.6 V or GND
V
CC
= 3.6 V, V
IN
= 3.6 V or V
OUT
= 3.6 V
2.3
≤
V
CC
≤
3.6 V; V
IH
= V
CC
−
0.6 V
V
CC
−
0.2
2.2
2.4
2.2
0.2
0.4
0.4
0.55
±5
10
±5
10
500
mA
mA
mA
mA
mA
V
Min
2.0
0.8
Max
Units
V
V
V
2. These values of V
I
are used to test DC electrical characteristics only.
AC ELECTRICAL CHARACTERISTICS
(t
R
= t
F
= 2.5 ns; C
L
= 50 pF; R
L
= 500
W)
Limits
T
A
=
−40°C
to +85°C
V
CC
= 3.0 V to 3.6 V
Symbol
t
PLH
t
PHL
t
PZH
t
PZL
t
PHZ
t
PLZ
t
OSHL
t
OSLH
Propagation Delay
Input to Output
Output Enable Time to
High and Low Level
Output Disable Time From
High and Low Level
Output−to−Output Skew (Note 3)
Parameter
Waveform
1
2
2
Min
1.5
1.5
1.5
1.5
1.5
1.5
Max
6.5
6.5
8.5
8.5
7.5
7.5
1.0
1.0
V
CC
= 2.7 V
Max
7.5
7.5
9.5
9.5
8.5
8.5
Units
ns
ns
ns
ns
3. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (t
OSHL
) or LOW−to−HIGH (t
OSLH
); parameter
guaranteed by design.
DYNAMIC SWITCHING CHARACTERISTICS
T
A
= +25°C
Symbol
V
OLP
Characteristic
Dynamic LOW Peak Voltage (Note 4)
Condition
V
CC
= 3.3 V, C
L
= 50 pF, V
IH
= 3.3 V, V
IL
= 0 V
Min
Typ
0.8
Max
Units
V
V
OLV
Dynamic LOW Valley Voltage (Note 4)
V
CC
= 3.3 V, C
L
= 50 pF, V
IH
= 3.3 V, V
IL
= 0 V
0.8
V
4. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is
measured in the LOW state.
CAPACITIVE CHARACTERISTICS
Symbol
C
IN
C
OUT
C
PD
Parameter
Input Capacitance
Output Capacitance
Power Dissipation Capacitance
Condition
V
CC
= 3.3 V, V
I
= 0 V or V
CC
V
CC
= 3.3 V, V
I
= 0 V or V
CC
10 MHz, V
CC
= 3.3 V, V
I
= 0 V or V
CC
Typical
7
8
25
Units
pF
pF
pF
http://onsemi.com
4
MC74LCX541
2.7 V
Dn
1.5 V
1.5 V
0V
t
PLH
1.5 V
t
PHL
V
OH
On
1.5 V
V
OL
WAVEFORM 1 - PROPAGATION DELAYS
t
R
= t
F
= 2.5 ns, 10% to 90%; f = 1 MHz; t
W
= 500 ns
2.7 V
OEn
1.5 V
0V
t
PZH
1.5 V
≈
0V
t
PZL
t
PLZ
≈
3.0 V
t
PHZ
V
CC
V
OH
- 0.3 V
On
On
1.5 V
V
OL
+ 0.3 V
GND
WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES
t
R
= t
F
= 2.5 ns, 10% to 90%; f = 1 MHz; t
W
= 500 ns
Figure 3. AC Waveforms
V
CC
6V
OPEN
GND
PULSE
GENERATOR
R
T
R
1
DUT
C
L
R
L
Test
t
PLH
, t
PHL
t
PZL
, t
PLZ
Open Collector/Drain t
PLH
and t
PHL
t
PZH
, t
PHZ
Switch
Open
6V
6V
GND
C
L
= 50 pF or equivalent (Includes jig and probe capacitance)
R
L
= R
1
= 500
W
or equivalent
R
T
= Z
OUT
of pulse generator (typically 50
W)
Figure 4. Test Circuit
http://onsemi.com
5