®
TP30-xxx Series
TRISIL
TM
FEATURES
BIDIRECTIONAL CROWBAR PROTECTION.
VOLTAGE RANGE: FROM 62 V TO 270 V.
HOLDING CURRENT :
I
H
= 150 mA min.
REPETITIVE PEAK PULSE CURRENT :
I
PP
= 30 A, 10/1000
µs.
JEDEC REGISTERED PACKAGE OUTLINE
DESCRIPTION
The TP30-xxx series has been designed to protect
telecommunication equipment against lightning
surges and overvoltages induced by AC power
lines.
F126
(JEDEC DO-204AC)
SCHEMATIC DIAGRAM
COMPLIES WITH THE
FOLLOWING STANDARDS:
(CCITT) ITU-K20
(CCITT) ITU-K17
VDE0433
VDE0878
IEC-1000-4-5
FCC Part 68, lightning surge
type A
FCC Part 68, lightning surge
type B
BELLCORE TR-NWT-001089
First level
BELLCORE TR-NWT-001089
Second level
CNET l31-24
November 1998 - Ed: 5A
Peak Surge
Voltage
(V)
1000
1500
2000
2000
level 2
level 3
1500
800
1000
2500
1000
5000
1000
Voltage
Waveform
(µs)
10/700
10/700
10/700
1.2/50
10/700
1.2/50
10/160
10/560
9/720
2/10
10/1000
2/10
0.5/700
Current
Waveform
(µs)
5/310
5/310
5/310
1/20
5/310
8/20
10/160
10/560
5/320
2/10
10/1000
2/10
0.8/310
Admissible
Ipp
(A)
25
38
40
50
25
50
65
50
25
125
30
125
25
Necessary
Resistor
(Ω)
-
-
10
-
-
-
15.5
8.0
-
15.0
23.3
15.0
-
1/6
TP30-xxx Series
ABSOLUTE MAXIMUM RATINGS
(T
amb
= 25°C)
Symbol
P
I
PP
I
TSM
I
2
t
dV/dt
T
stg
T
j
T
L
Peak pulse current
Non repetitive surge peak on-state current
I
2
t value for fusing
Parameter
Power dissipation on infinite heatsink
T
amb
= 50
°C
10/1000
µs
8/20
µs
tp = 20 ms
tp = 20 ms
Value
3
30
60
15
1
5
- 55 to + 150
150
230
Unit
W
A
A
A
2
s
kV/µs
°C
°C
°C
Critical rate of rise of off-state voltage
V
RM
Storage temperature range
Maximum junction temperature
Maximumlead temperaturefor solderingduring 10s at 5mm forcase
THERMAL RESISTANCES
Symbol
R
th
(j-l)
R
th
(j-a)
Junction to leads
Junction to ambient on printed circuit
with standard footprint dimension
Parameter
Value
60
100
Unit
°C/W
°C/W
ELECTRICAL CHARACTERISTICS
(T
amb
= 25°C)
Symbol
V
RM
I
RM
V
R
V
BR
V
BO
I
H
I
BO
I
PP
C
Parameter
Stand-off voltage
Leakage current at stand-off voltage
Continuous Reverse voltage
Breakdown voltage
Breakover voltage
Holding current
Breakover current
Peak pulse current
Capacitance
2/6
TP30-xxx Series
Type
I
RM
@ V
RM
max
µA
V
I
R
@ V
R
max
note 1
µA
V
V
BO
@ I
BO
max
note 2
V
mA
I
H
min
note 3
mA
C
typ
note 4
pF
typ
note 5
20
20
16
16
14
14
12
12
12
12
TP30-62
TP30-68
TP30-100
TP30-120
TP30-130
TP30-180
TP30-200
TP30-220
TP30-240
TP30-270
Note 1:
Note 2:
Note 3:
Note 4:
Note 5:
2
2
2
2
2
2
2
2
2
2
56
61
90
108
117
162
180
198
216
243
50
50
50
50
50
50
50
50
50
50
62
68
100
120
130
180
200
220
240
270
82
90
133
160
173
240
267
293
320
360
800
800
800
800
800
800
800
800
800
800
150
150
150
150
150
150
150
150
150
150
50
50
40
40
35
35
30
30
30
30
IR measured at VR guarantee VBRmin
≥
VR
Measured at 50 Hz (1 cycle) - See test circuit 1.
See test circuit 2.
VR = 1V, F = 1MHz.
VR = 50V, F = 1MHz.
TEST CIRCUIT 1 FOR I
BO
and V
BO
parameters:
tp = 20ms
Auto
Transformer
220V/2A
static
relay.
K
R1
140
R2
240
220V
Vout
IBO
measure
Transformer
220V/800V
5A
D.U.T
V BO
measure
TEST PROCEDURE :
Pulse Test duration (tp = 20ms):
- For Bidirectional devices = Switch K is closed
- For Unidirectional devices = Switch K is open.
V
OUT
Selection
- Device with V
BO
<
250 Volt
- V
OUT
= 250 V
RMS
, R
1
= 140
Ω.
- Device with V
BO
≥
250 Volt
- V
OUT
= 480 V
RMS
, R
2
= 240
Ω.
3/6
TP30-xxx Series
TEST CIRCUIT 2 for I
H
parameter.
R
D.U.T.
V
BAT
= - 48 V
Surge generator
- V
P
This is a GO-NOGO Test which allows to confirm the holding current (I
H
) level in a functional
test circuit.
TEST PROCEDURE :
1) Adjust the current level at the I
H
value by short circuiting the AK of the D.U.T.
2) Fire the D.U.T with a surge Current : Ipp = 10A , 10/1000
µs.
3) The D.U.T will come back off-state within 50 ms max.
4/6
TP30-xxx Series
Fig. 1:
Non repetitive surge peak on-sate current
versus overload duration (Tj initial = 25°C).
ITSM(A)
20
F = 50Hz
Fig. 2:
Relative variation of holding current versus
junction temperature.
IH[Tj] / IH[Tj=25°C]
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-40
15
10
5
0
1E-2
1E-1
1E+0
t(s)
1E+1
1E+2
1E+3
-20
0
20
40
Tj(°C)
60
80
100
120
Fig. 3:
Relative variation of junction capacitance
versus reverse applied voltage (typical values).
Note:
For VRM upper than 56V, the curve is extrapolated (dotted line)
Fig. 4:
On-state voltage versus on-state current
(typical values).
C[VR]/C[VR=1V]
1.0
F = 1MHz
IT(A)
50
Tj = 25°C
0.5
20
10
5
0.2
2
0.1
1
10
VR(V)
100
300
1
0
1
2
3
4
5
6
VT(V)
7
8
9
10
Fig. 5:
Variation of thermal impedance junction to
ambient versus pulse duration.
Zth(j-a)(°CW)
1E+2
Fig. 6:
Relative variation of V
BO
voltage versus
junction temperature.
Vbo[Tj]/Vbo[Tj=25°C]
1.10
1.05
1E+1
1.00
1E+0
0.95
1E-1
1E-3
62 V
270 V
1E-2
1E-1
1E+0
tp(s)
1E+1
1E+2 5E+2
0.90
-40
-20
0
20
40
Tj(°C)
60
80
100
5/6