TYPICAL PERFORMANCE CURVES
®
APT65GP60JDQ2
600V
APT65GP60JDQ2
POWER MOS 7 IGBT
®
E
G
C
E
The POWER MOS 7
®
IGBT is a new generation of high voltage power IGBTs. Using Punch
Through Technology this IGBT is ideal for many high frequency, high voltage switching
applications and has been optimized for high frequency switchmode power supplies.
• Low Conduction Loss
• Low Gate Charge
• Ultrafast Tail Current shutoff
• 100 kHz operation @ 400V, 33A
• 50 kHz operation @ 400V, 47A
• SSOA Rated
SO
2
T-
27
ISOTOP
®
"UL Recognized"
file # E145592
C
G
E
MAXIMUM RATINGS
Symbol
V
CES
V
GE
I
C1
I
C2
I
CM
SSOA
P
D
T
J
,T
STG
T
L
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current @ T
C
= 25°C
Continuous Collector Current @ T
C
= 110°C
Pulsed Collector Current
1
All Ratings: T
C
= 25°C unless otherwise specified.
APT65GP60JDQ2
UNIT
Volts
600
±20
130
60
250
250A @ 600V
431
-55 to 150
300
Amps
@ T
C
= 150°C
Switching Safe Operating Area @ T
J
= 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
Watts
°C
STATIC ELECTRICAL CHARACTERISTICS
Symbol
V
(BR)CES
V
GE(TH)
V
CE(ON)
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (V
GE
= 0V, I
C
= 1000µA)
Gate Threshold Voltage
(V
CE
= V
GE
, I
C
= 2.5mA, T
j
= 25°C)
MIN
TYP
MAX
Units
600
3
4.5
2.2
2.1
1250
µA
nA
6-2005
050-7453
Rev A
6
2.7
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 65A, T
j
= 25°C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 65A, T
j
= 125°C)
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 25°C)
2
2
Volts
I
CES
I
GES
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 125°C)
Gate-Emitter Leakage Current (V
GE
= ±20V)
5500
±100
CAUTION:
These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
DYNAMIC CHARACTERISTICS
Symbol
C
ies
C
oes
C
res
V
GEP
Q
g
Q
ge
Q
gc
SSOA
t
d(on)
t
d(off)
t
f
E
on1
E
on2
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
E
off
t
r
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
3
APT65GP60JDQ2
Test Conditions
Capacitance
V
GE
= 0V, V
CE
= 25V
f = 1 MHz
Gate Charge
V
CE
= 300V
I
C
= 65A
T
J
= 150°C, R
G
= 5Ω, V
GE
=
V
GE
= 15V
MIN
TYP
MAX
UNIT
pF
V
nC
7400
580
35
7.5
210
50
65
250
30
55
90
65
605
1410
895
30
55
130
90
605
1925
1470
µ
J
ns
ns
A
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Switching Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
Turn-off Switching Energy
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
Turn-off Switching Energy
4
4
55
4
5
15V, L = 100µH,V
CE
= 600V
Inductive Switching (25°C)
V
CC
= 400V
V
GE
= 15V
I
C
= 65A
R
G
= 5Ω
Turn-on Switching Energy (Diode)
6
T
J
= +25°C
Inductive Switching (125°C)
V
CC
= 400V
V
GE
= 15V
I
C
= 65A
R
G
= 5Ω
µ
J
Turn-on Switching Energy (Diode)
6
T
J
= +125°C
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
R
θ
JC
R
θ
JC
W
T
V
Isolation
Characteristic
Junction to Case
(IGBT)
Junction to Case
(DIODE)
Package Weight
RMS Voltage
(50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.)
2500
MIN
TYP
MAX
UNIT
°C/W
gm
Volts
.29
1.21
29.2
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, I
ces
includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 E
on1
is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 E
on2
is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 E
off
is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
050-7453
Rev A
6-2005
TYPICAL PERFORMANCE CURVES
100
90
I
C
, COLLECTOR CURRENT (A)
I
C
, COLLECTOR CURRENT (A)
100
90
80
70
60
50
40
30
20
10
0
T
J
= -55°C
T
J
= 25°C
T
J
= 125°C
APT65GP60JDQ2
80
70
60
50
40
30
20
10
0
0
0.5
1.0
1.5
2.0
2.5
3.0
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
T
J
= -55°C
T
J
= 25°C
T
J
= 125°C
250
I
C
, COLLECTOR CURRENT (A)
FIGURE 1, Output Characteristics(T
J
= 25°C)
16
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (T
J
= 125°C)
I = 65A
C
T = 25°C
J
0
0.5
1.0
1.5
2.0
2.5
3.0
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
14
12
10
8
6
4
2
0
0
200
V
CE
= 120V
V
CE
= 300V
150
T
J
= -55°C
100
T
J
= 25°C
V
CE
= 480V
50
T
J
= 125°C
0
0
2 3
4 5 6
7 8
9 10
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
1
50
100
150
200
GATE CHARGE (nC)
250
FIGURE 4, Gate Charge
3.0
2.5
2.0
1.5
1.0
0.5
I
C
= 32.5A
I
C
= 130A
I
C
= 65A
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
I
C
= 130A
T
J
= 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
I
C
= 65A
I
C
= 32.5A
8
10
12
14
16
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.10
0
6
-25
0
25
50
75
100 125
T
J
, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
180
0
-50
V
GE
= 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
BV
CES
, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
I
C,
DC COLLECTOR CURRENT(A)
160
140
120
100
80
6-2005
050-7453
Rev A
1.05
1.00
60
40
20
-25
0
25 50 75 100 125 150
T
C
, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
0
-50
0.95
-25
0
25
50
75
100 125
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
0.90
-50
35
t
d (OFF)
, TURN-OFF DELAY TIME (ns)
t
d(ON)
, TURN-ON DELAY TIME (ns)
160
140
120
100
80
60
40
V
=
400V
20
R
CE
=
5Ω
G
V
GE
=15V,T
J
=25°C
V
GE
=15V,T
J
=125°C
APT65GP60JDQ2
30
25
20
15
10
5
0
V
CE
= 400V
T
J
= 25°C
,
T
J
=125°C
R
G
= 5Ω
L = 100 µH
V
GE
= 15V
85
105 125 145
5
25
45
65
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
140
120
100
80
60
40
20
0
T
J
=
25 or 125°C,V
GE
=
15V
R
G
=
5Ω, L
=
100
µ
H, V
CE
=
400V
5
25
45
65
85
105 125 145
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
140
120
T
J
=
125°C, V
GE
=
15V
0
L = 100 µH
R
G
=
5Ω, L
=
100
µ
H, V
CE
=
400V
t
f,
FALL TIME (ns)
t
r,
RISE TIME (ns)
100
80
60
40
20
0
T
J
=
25°C, V
GE
=
15V
25
45
65
85 105 125 145
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
6000
E
ON2
, TURN ON ENERGY LOSS (µJ)
E
OFF
, TURN OFF ENERGY LOSS (µJ)
= 400V
V
CE
= +15V
V
GE
R = 5Ω
G
5
5
25
45
65
85
105 125 145
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
5000
= 400V
V
CE
= +15V
V
GE
R = 5Ω
G
5000
4000
3000
2000
1000
T
J
=
125°C,V
GE
=
15V
4000
T
J
=
125°C, V
GE
=
15V
3000
2000
1000
T
J
=
25°C,V
GE
=
15V
T
J
=
25°C, V
GE
=
15V
25
45
65
85
105 125 145
10
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10000
SWITCHING ENERGY LOSSES (µJ)
= 400V
V
CE
= +15V
V
GE
T = 125°C
J
0
5
25
45
65
85 105 145 165
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
6000
E
on2,
130A
V
= 400V
CE
V
= +15V
GE
R = 5Ω
G
0
E
on2,
130A
SWITCHING ENERGY LOSSES (µJ)
8000
5000
4000
3000
2000
1000
0
E
off,
130A
6000
4000
E
off,
130A
E
on2,
65A
6-2005
E
on2,
65A
E
off,
65A
E
on2,
32.5A
E
off
32.5A
,
2000
E
off,
65A
E
off
32.5A
,
Rev A
E
on2,
32.5A
050-7453
10
20
30
40
50
R
G
, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
0
25
50
75
100
125
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
10,000
5000
C
ies
I
C
, COLLECTOR CURRENT (A)
300
250
200
150
100
50
0
APT65GP60JDQ2
C, CAPACITANCE ( F)
1,000
500
C
0es
P
100
50
C
res
0
10
20
30
40
50
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
10
0
100 200 300 400 500 600 700
V
CE
, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.30
0.9
Z
θ
JC
, THERMAL IMPEDANCE (°C/W)
0.25
0.20
0.15
0.10
0.05
0
0.7
0.5
Note:
PDM
0.3
t1
t2
0.1
0.05
10
-5
10
-4
SINGLE PULSE
Duty Factor D =
1
/
t2
Peak TJ = PDM x Z
θJC
+ TC
t
10
-3
10
-2
10
-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
190
F
MAX
, OPERATING FREQUENCY (kHz)
100
50
Junction
temp. (°C)
RC MODEL
0.0697
0.0175
F
10
5
T = 125
°
C
J
T = 75
°
C
C
D = 50 %
V
= 400V
CE
R = 5Ω
G
Power
(watts)
0.136
0.227
= min (f
max
, f
max2
)
0.05
f
max1
=
t
d(on)
+ t
r
+ t
d(off)
+ t
f
max
f
max2
=
P
diss
=
P
diss
- P
cond
E
on2
+ E
off
T
J
- T
C
R
θJC
0.0833
Case temperature. (°C)
1.08
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
30
45
60
75
90 105 120
I
C
, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
1
15
050-7453
Rev A
6-2005