AUTOMOTIVE GRADE
PD -
96398A
Features
l
Advanced Process Technology
l
Low On-Resistance
l
175°C Operating Temperature
l
Fast Switching
l
Repetitive Avalanche Allowed up to Tjmax
l
Lead-Free, RoHS Compliant
l
Automotive Qualified *
Description
Specifically designed for Automotive applications, this
HEXFET
®
Power MOSFET utilizes the latest processing
techniques to achieve extremely low on-resistance per silicon
area. Additional features of this design are a 175°C junction
operating temperature, fast switching speed and improved
repetitive avalanche rating . These features combine to make
this design an extremely efficient and reliable device for use in
Automotive applications and a wide variety of other applications.
AUIRFR4615
AUIRFU4615
D
HEXFET
®
Power MOSFET
G
S
V
DSS
R
DS(on)
typ.
max.
I
D
D
D
150V
34m
:
42m
:
33A
S
G
G
D
S
DPak
AUIRFR4615
G
D
IPAK
AUIRFU4615
S
Gate
Drain
Source
Absolute Maximum Ratings
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are
stress ratings only; and
functional operation of the device at these or any other condition beyond those indicated in the
specifications is not implied.Exposure
to absolute-maximum-rated conditions for extended periods may affect device reliability.
The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient
temperature (T
A
) is 25°C, unless otherwise specified.
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
V
GS
E
AS (Thermally limited)
I
AR
E
AR
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Max.
33
24
140
144
0.96
± 20
109
See Fig. 14, 15, 22a, 22b,
38
-55 to + 175
300(1.6mm from case)
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
c
c
d
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
e
c
Thermal Resistance
R
θJC
R
θJA
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB Mount)
Junction-to-Ambient
j
Parameter
Typ.
Max.
1.045
50
110
Units
°C/W
i
–––
–––
–––
HEXFET
®
is a registered trademark of International Rectifier.
*Qualification
standards can be found at http://www.irf.com/
www.irf.com
1
10/04/11
AUIRFR/U4615
Static Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V
(BR)DSS
ΔV
(BR)DSS
/ΔT
J
R
DS(on)
V
GS(th)
gfs
I
DSS
I
GSS
R
G(int)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
150
–––
–––
3.0
35
–––
–––
–––
–––
–––
Conditions
–––
0.19
34
–––
–––
–––
–––
–––
–––
2.7
–––
V V
GS
= 0V, I
D
= 250μA
––– V/°C Reference to 25°C, I
D
= 5mA
42
mΩ V
GS
= 10V, I
D
= 21A
5.0
V V
DS
= V
GS
, I
D
= 100μA
–––
S V
DS
= 50V, I
D
= 21A
V
DS
= 150V, V
GS
= 0V
20
μA
V
DS
= 150V, V
GS
= 0V, T
J
= 125°C
250
V
GS
= 20V
100
nA
V
GS
= -20V
-100
f
–––
Ω
Dynamic @ T
J
= 25°C (unless otherwise specified)
Parameter
Q
g
Q
gs
Q
gd
Q
sync
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
eff. (ER)
C
oss
eff. (TR)
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Q
g
- Q
gd
)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
Min. Typ. Max. Units
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
26
8.6
9.0
17
15
35
25
20
1750
155
40
179
382
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Conditions
I
D
= 21A
V
DS
= 75V
nC
V
GS
= 10V
I
D
= 21A, V
DS
=0V, V
GS
= 10V
V
DD
= 98V
I
D
= 21A
ns
R
G
= 7.3Ω
V
GS
= 10V
V
GS
= 0V
V
DS
= 50V
(See Fig.5)
pF ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 0V to 120V (See Fig.11)
V
GS
= 0V, V
DS
= 0V to 120V
f
f
h
g
Diode Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
I
RRM
t
on
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Min. Typ. Max. Units
–––
–––
–––
–––
33
A
140
Conditions
MOSFET symbol
showing the
integral reverse
G
D
Ã
Reverse Recovery Charge
Reverse Recovery Current
Forward Turn-On Time
S
p-n junction diode.
––– –––
1.3
V T
J
= 25°C, I
S
= 21A, V
GS
= 0V
T
J
= 25°C
V
R
= 100V,
–––
70
–––
ns
T
J
= 125°C
I
F
= 21A
–––
83
–––
di/dt = 100A/μs
T
J
= 25°C
––– 177 –––
nC
T
J
= 125°C
––– 247 –––
–––
4.9
–––
A T
J
= 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
f
f
Notes:
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
Jmax
, starting T
J
= 25°C, L = 0.51mH
R
G
= 25Ω, I
AS
= 21A, V
GS
=10V. Part not recommended for use
above this value .
I
SD
≤
21A, di/dt
≤
549A/μs, V
DD
≤
V
(BR)DSS
, T
J
≤
175°C.
Pulse width
≤
400μs; duty cycle
≤
2%.
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time
as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as
C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application
note #AN-994
R
θ
is measured at T
J
approximately 90°C
2
www.irf.com
AUIRFR/U4615
Qualification Information
†
Automotive
(per AEC-Q101)
Qualification Level
††
Comments: This part number(s) passed Automotive
qualification. IR’s Industrial and Consumer qualification
level is granted by extension of the higher Automotive level.
D PAK
I-PAK
MSL1
N/A
Class M3(+/- 400V )
AEC-Q101-002
†††
Moisture Sensitivity Level
Machine Model
Human Body Model
Charged Device
Model
RoHS Compliant
†
††
†††
ESD
Class H1B(+/- 1000V )
AEC-Q101-001
Class C5(+/- 2000V )
AEC-Q101-005
Yes
†††
†††
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/
Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report.
Highest passing voltage
www.irf.com
3
AUIRFR/U4615
1000
TOP
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
1000
TOP
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
100
100
BOTTOM
10
BOTTOM
10
5.0V
1
1
5.0V
≤
60μs PULSE WIDTH
Tj = 25°C
0.01
0.1
1
10
100
V DS, Drain-to-Source Voltage (V)
0.1
≤
60μs PULSE WIDTH
Tj = 175°C
0.1
0.1
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
1000
RDS(on) , Drain-to-Source On Resistance
(Normalized)
Fig 2.
Typical Output Characteristics
3.0
ID = 21A
VGS = 10V
ID, Drain-to-Source Current (A)
100
2.5
TJ = 175°C
TJ = 25°C
2.0
10
1.5
1
VDS = 50V
≤60μs
PULSE WIDTH
0.1
2
4
6
8
10
12
14
16
1.0
0.5
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 3.
Typical Transfer Characteristics
100000
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
Fig 4.
Normalized On-Resistance vs. Temperature
14.0
VGS, Gate-to-Source Voltage (V)
12.0
10.0
8.0
6.0
4.0
2.0
0.0
ID= 21A
VDS= 120V
VDS= 75V
VDS= 30V
10000
C, Capacitance (pF)
Ciss
1000
Coss
Crss
100
10
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
0
5
10
15
20
25
30
35
QG, Total Gate Charge (nC)
Fig 5.
Typical Capacitance vs. Drain-to-Source Voltage
Fig 6.
Typical Gate Charge vs. Gate-to-Source Voltage
4
www.irf.com
AUIRFR/U4615
1000
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100μsec
1msec
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
T J = 175°C
10
T J = 25°C
10
10msec
DC
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
10
100
1000
VGS = 0V
1.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
VSD, Source-to-Drain Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
40
35
30
25
20
15
10
5
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
Fig 8.
Maximum Safe Operating Area
190
185
180
175
170
165
160
155
150
145
140
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Temperature ( °C )
Id = 5mA
ID, Drain Current (A)
Fig 9.
Maximum Drain Current vs.
Case Temperature
3.0
EAS , Single Pulse Avalanche Energy (mJ)
Fig 10.
Drain-to-Source Breakdown Voltage
500
450
400
350
300
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
ID
TOP
2.8A
5.3A
BOTTOM 21A
2.5
2.0
Energy (μJ)
1.5
1.0
0.5
0.0
-20
0
20
40
60
80 100 120 140 160
VDS, Drain-to-Source Voltage (V)
Fig 11.
Typical C
OSS
Stored Energy
Fig 12.
Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
5