D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
Advanced Power MOSFET
FEATURES
Avalanche Rugged Technology
Rugged Gate Oxide Technology
Lower Input Capacitance
Improved Gate Charge
Extended Safe Operating Area
175
C
Operating Temperature
Lower Leakage Current : 10
µ
A (Max.) @ V
DS
= 100V
Lower R
DS(ON)
: 0.092
Ω
(Typ.)
1
Ο
IRFS530A
BV
DSS
= 100 V
R
DS(on)
= 0.11
Ω
I
D
= 10.7 A
TO-220F
2
3
1.Gate 2. Drain 3. Source
Absolute Maximum Ratings
Symbol
V
DSS
I
D
I
DM
V
GS
E
AS
I
AR
E
AR
dv/dt
P
D
T
J
, T
STG
T
L
Characteristic
Drain-to-Source Voltage
Continuous Drain Current (T
C
=25
C
)
Ο
Value
100
10.7
7.6
1
O
2
O
1
O
1
O
3
O
Ο
Units
V
A
A
V
mJ
A
mJ
V/ns
W
W/
C
Ο
Continuous Drain Current (T
C
=100
C
)
Drain Current-Pulsed
Gate-to-Source Voltage
Single Pulsed Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Total Power Dissipation (T
C
=25
C
)
Ο
56
+
20
_
229
10.7
3.2
6.5
32
0.21
- 55 to +175
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Maximum Lead Temp. for Soldering
Purposes, 1/8” from case for 5-seconds
Ο
C
300
Thermal Resistance
Symbol
R
θ
JC
R
θ
JA
Characteristic
Junction-to-Case
Junction-to-Ambient
Typ.
--
--
Max.
4.69
62.5
Units
Ο
C
/W
Rev. B
©1999 Fairchild Semiconductor Corporation
IRFS530A
Ο
N-CHANNEL
POWER MOSFET
Electrical Characteristics
(T
C
=25
C
unless otherwise specified)
Symbol
BV
DSS
∆
BV/
∆
T
J
V
GS(th)
I
GSS
I
DSS
R
DS(on)
g
fs
C
iss
C
oss
C
rss
t
d(on)
t
r
t
d(off)
t
f
Q
g
Q
gs
Q
gd
Characteristic
Drain-Source Breakdown Voltage
Breakdown Voltage Temp. Coeff.
Gate Threshold Voltage
Gate-Source Leakage , Forward
Gate-Source Leakage , Reverse
Drain-to-Source Leakage Current
Static Drain-Source
On-State Resistance
Forward Transconductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Gate Charge
Gate-Source Charge
Gate-Drain(“Miller”) Charge
Min. Typ. Max. Units
100
--
2.0
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
0.11
--
--
--
--
--
--
9.18
610
150
62
13
14
55
36
27
4.5
12.8
--
--
4.0
100
-100
10
100
0.11
--
790
175
72
40
40
110
80
36
--
--
nC
ns
pF
µ
A
Ω
Ω
V
Test Condition
V
GS
=0V,I
D
=250
µ
A
See Fig 7
V/
C
I
D
=250
µ
A
V
DS
=5V,I
D
=250
µ
A
V
Ο
nA
V
GS
=20V
V
GS
=-20V
V
DS
=100V
V
DS
=80V,T
C
=150
C
V
GS
=10V,I
D
=5.35A
V
DS
=40V,I
D
=5.35A
4
O
4
O
Ο
V
GS
=0V,V
DS
=25V,f =1MHz
See Fig 5
V
DD
=50V,I
D
=14A,
R
G
=12
Ω
See Fig 13
V
DS
=80V,V
GS
=10V,
I
D
=14A
See Fig 6 & Fig 12
4
5
OO
4
5
OO
Source-Drain Diode Ratings and Characteristics
Symbol
I
S
I
SM
V
SD
t
rr
Q
rr
Characteristic
Continuous Source Current
Pulsed-Source Current
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
1
O
4
O
Min. Typ. Max. Units
--
--
--
--
--
--
--
--
109
0.41
10.7
56
1.5
--
--
A
V
ns
µ
C
Test Condition
Integral reverse pn-diode
in the MOSFET
T
J
=25
C
,I
S
=10.7A,V
GS
=0V
T
J
=25
C
,I
F
=14A
di
F
/dt=100A/
µ
s
4
O
Ο
Ο
Notes ;
1
O
Repetitive Rating : Pulse Width Limited by Maximum Junction Temperature
2
O
L=3mH, I
AS
=10.7A, V
DD
=25V, R
G
=27
Ω
, Starting T
J
=25
oo
C
3
_
_
_
O
I
SD
<
14A, di/dt
<
350A/
µ
s, V
DD
<
BV
DSS
, Starting T
J
=25 C
_
s,
4
Pulse Test : Pulse Width = 250
µ
Duty Cycle
<
2%
O
5
O
Essentially Independent of Operating Temperature
N-CHANNEL
POWER MOSFET
Fig 1. Output Characteristics
V
GS
IRFS530A
Fig 2. Transfer Characteristics
[A]
I
D
, Drain Current
10
1
I
D
, Drain Current
[A]
10
1
Top :
15V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
Bottom : 4.5 V
175
o
C
10
0
25
o
C
@ Notes :
1. V = 0 V
GS
- 55
o
C
2. V = 40 V
DS
3. 250
µ
s Pulse Test
6
8
10
10
0
@ Notes :
1. 250
µ
s Pulse Test
2. T = 25
o
C
C
10
0
10
1
10
-1
10
-1
2
4
V
DS
, Drain-Source Voltage [V]
[A]
V
GS
, Gate-Source Voltage [V]
Fig 3. On-Resistance vs. Drain Current
R
DS(on)
, [ ]
Ω
Drain-Source On-Resistance
02
.0
Fig 4. Source-Drain Diode Forward Voltage
01
.5
V
GS
= 10 V
I
DR
, Reverse Drain Current
1
1
0
01
.0
V
GS
= 20 V
00
.5
@ N t : T
J
= 25
o
C
oe
00
.0
0
15
30
45
6
0
1
0
0
@Nts:
oe
1 V
GS
= 0 V
.
2 2 0
µ
s P l e T s
. 5
us et
08
.
10
.
12
.
14
.
16
.
18
.
20
.
22
.
1 5
o
C
7
2
o
C
5
1
-1
0
04
.
06
.
I
D
, Drain Current [A]
V
SD
, Source-Drain Voltage [V]
Fig 5. Capacitance vs. Drain-Source Voltage
10
00
C
iss
70
5
C
iss
= C
gs
+ C ( C
ds
= s o t d )
hre
gd
C
oss
= C
ds
+ C
gd
C
rss
= C
gd
Fig 6. Gate Charge vs. Gate-Source Voltage
[V]
V
DS
= 2 V
0
1
0
V =5 V
0
DS
V
DS
= 8 V
0
[pF]
C
oss
50
0
@Nts:
oe
1 V
GS
= 0 V
.
2 f=1Mz
.
H
V
GS
, Gate-Source Voltage
Capacitance
5
C
rss
20
5
@ N t s : I
D
= 1 . A
oe
40
0
0
5
1
0
1
5
2
0
2
5
3
0
0
0
1
0
1
10
V
DS
, Drain-Source Voltage [V]
Q
G
, Total Gate Charge [nC]
IRFS530A
BV
DSS
, (Normalized)
Drain-Source Breakdown Voltage
N-CHANNEL
POWER MOSFET
Fig 8. On-Resistance vs. Temperature
R
DS(on)
, (Normalized)
Drain-Source On-Resistance
3.0
Fig 7. Breakdown Voltage vs. Temperature
1.2
2.5
1.1
2.0
1.0
1.5
1.0
@ Notes :
1. V = 10 V
GS
2. I = 7.0 A
D
0.9
@ Notes :
1. V = 0 V
GS
2. I = 250
µ
A
D
0.5
0.8
-75
-50
-25
0
25
50
75
100
T
J
, Junction Temperature [ C]
125
o
150
175
200
0.0
-75
-50
-25
0
25
50
75
100
T
J
, Junction Temperature [ C]
125
o
150
175
200
Fig 9. Max. Safe Operating Area
[A]
2
10
Fig 10. Max. Drain Current vs. Case Temperature
12
Operation in This Area
is Limited by R
DS(on)
100
µ
s
1 ms
I
D
, Drain Current
I
D
, Drain Current
[A]
9
10 ms
6
3
2
10
1
10
100 ms
DC
0
10
@ Notes :
1. T = 25
o
C
C
2. T = 175
o
C
J
3. Single Pulse
10
-1
10
0
10
1
0
25
50
75
100
125
150
175
V
DS
, Drain-Source Voltage [V]
T
c
, Case Temperature [
o
C]
Fig 11. Thermal Response
Thermal Response
D=0.5
10
0
0.2
0.1
0.05
10
- 1
0.02
0.01
single pulse
10
- 2
10
- 5
@ Notes :
1. Z
θ
J C
(t)=4.69
o
C/W
Max.
2. Duty Factor, D=t /t
2
1
3. T
J M
-T
C
=P
D M
*Z
θ
J C
(t)
Z
JC
(t) ,
P
DM
t
1
t
2
10
- 4
10
- 3
10
- 2
10
- 1
10
0
10
1
θ
t
1
, Square Wave Pulse Duration
[sec]