LF147 - LF247
LF347
WIDE BANDWIDTH
QUAD J-FET OPERATIONAL AMPLIFIERS
s
LOW POWER CONSUMPTION
s
WIDE COMMON-MODE (UP TO V
CC+
) AND
DIFFERENTIAL VOLTAGE RANGE
s
LOW INPUT BIAS AND OFFSET CURRENT
s
OUTPUT SHORT-CIRCUIT PROTECTION
s
HIGH INPUT IMPEDANCE J–FET INPUT
STAGE
N
DIP14
(Plastic Package)
s
INTERNAL FREQUENCY COMPENSATION
s
LATCH UP FREE OPERATION
s
HIGH SLEW RATE : 16V/µs (typ)
D
SO14
(Plastic Micropackage)
DESCRIPTION
These circuits are high speed J–FET input quad
operational amplifiers incorporating well matched,
high voltage J–FET and bipolar transistors in a
monolithic integrated circuit.
The devices feature high slew rates, low input bias
and offset currents, and low offset voltage tem-
perature coefficient.
PIN CONNECTIONS
(top view)
ORDER CODE
Package
Part Number
Temperature Range
N
LF147
LF247
LF347
Example :
LF347IN
-55°C, +125°C
-40°C, +105°C
0°C, +70°C
•
•
•
D
•
•
•
N =
Dual in Line Package (DIP)
D =
Small Outline Package (SO) - also available in Tape & Reel (DT)
Output 1 1
Inverting Input 1 2
Non-inverting Input 1 3
V
CC
+ 4
Non-inverting Input 2 5
Inverting Input 2 6
Output 2 7
+
-
+
-
-
+
-
+
14 Output 4
13 Inverting Input 4
12 Non-inverting Input 4
11 V
CC
-
10 Non-inverting Input 3
9
8
Inverting Input 3
Output 3
March 2001
1/10
LF147 - LF247 - LF347
SCHEMATIC DIAGRAM
(each amplifier)
V
CC
Non-inverting input
Inverting input
100
W
100
W
200
W
Output
30k
8.2k
1.3k
V
CC
35k
1.3k
35k
100
W
ABSOLUTE MAXIMUM RATINGS
Symbol
V
CC
V
i
V
id
P
tot
T
oper
T
stg
1.
2.
3.
4.
Parameter
Supply voltage - note
1)
Input Voltage - note
2)
Differential Input Voltage - note
3)
Power Dissipation
Output Short-circuit Duration - note
4)
Operating Free-air Temperature Range
Storage Temperature Range
LF147
LF247
LF347
Unit
V
V
V
mW
±18
±15
±30
680
Infinite
-55 to +125
-40 to +105
-65 to +150
0 to +70
°C
°C
All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference
level is the midpoint between V
CC +
and V
CC -
.
The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating
is not exceeded
2/10
LF147 - LF247 - LF347
ELECTRICAL CHARACTERISTICS
V
CC
= ±15V, T
amb
= +25°C (unless otherwise specified)
Symbol
V
io
DV
io
I
io
Parameter
Input Offset Voltage (R
s
=
10kΩ)
T
amb
= 25°C
T
min
≤
T
amb
≤
T
max
Input Offset Voltage Drift
Input Offset Current - note
1)
T
amb
= 25°C
T
min
≤
T
amb
≤
T
max
Input Bias Current - note 1
T
amb
= 25°C
T
min
≤
T
amb
≤
T
max
Large Signal Voltage Gain (R
L
= 2kΩ, V
o
= ±10V) ,
T
amb
= 25°C
T
min
≤
T
amb
≤
T
max
Supply Voltage Rejection Ratio (R
S
=
10kΩ)
T
amb
= 25°C
T
min
≤
T
amb
≤
T
max
Supply Current, Per Amp, no Load
T
amb
= 25°C
T
min
≤
T
amb
≤
T
max
Input Common Mode Voltage Range
Common Mode Rejection Ratio (R
S
=
10kΩ)
T
amb
= 25°C
T
min
≤
T
amb
≤
T
max
Output Short-Circuit Current
T
amb
= 25°C
T
min
≤
T
amb
≤
T
max
Output Voltage Swing
T
amb
= 25°C
±V
opp
T
min
≤
T
amb
≤
T
max
R
L
= 2kΩ
R
L
= 10kΩ
R
L
= 2kΩ
R
L
= 10kΩ
±11
50
25
80
80
Min.
Typ.
3
10
5
100
4
200
20
Max.
10
13
µV/°C
pA
nA
pA
nA
V/mV
200
dB
86
mA
1.4
+15
-12
86
mA
10
10
10
12
10
12
12
40
60
60
V
12
13.5
2.7
2.7
V
dB
70
70
Unit
mV
I
ib
20
A
vd
SVR
I
CC
V
icm
CMR
I
OS
SR
t
r
K
ov
GBP
R
i
Slew Rate
V
i
= 10V, R
L
= 2kΩ, C
L
= 100pF, T
amb
= 25°C, unity gain
Rise Time
V
i
= 20mV, R
L
= 2kΩ,C
L
= 100pF, T
amb
= 25°C, unity gain
Overshoot
V
i
= 20mV, R
L
= 2kΩ, C
L
= 100pF, T
amb
= 25°C, unity gain
Gain Bandwidth Product
f =100kHz, T
amb
= 25°C, V
in
= 10mV, R
L
=2kΩ, C
L
= 100pF
Input Resistance
V/µs
16
µs
0.1
%
10
MHz
2.5
4
10
12
Ω
%
THD
Total Harmonic Distortion
f =1kHz, A
v
= 20dB, R
L
= 2kΩ, C
L
= 100pF
T
amb
= 25°C, V
O
= 2Vpp
Equivalent Input Noise Voltage (R
S
=
100Ω, f = 1KHz)
0.01
15
45
120
nV
-----------
-
Hz
Degrees
dB
e
n
∅m
Phase Margin
V
o1
/V
o2
Channel Separation ( A
v
= 100)
1.
The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature.
3/10
LF147 - LF247 - LF347
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE versus FREQUENCY
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE versus FREQUENCY
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE versus FREQUENCY
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE versus FREE AIR TEMP.
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE versus LOAD RESISTANCE
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE versus SUPPLY VOLTAGE
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE (V)
30
25
R
L
= 10 kΩ
T
amb
= +25˚C
20
15
10
5
0
2
12
SUPPLY VOLTAGE ( V)
4
6
8
10
14
16
4/10
LF147 - LF247 - LF347
INPUT BIAS CURRENT versus FREE AIR
TEMPERATURE
LARGE SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT versus
FREQUENCY
100
V
CC
=
INPUT BIAS CURRENT (nA)
10
1
0.1
15V
DIFFERENTIAL VOLTAGE
AMPLIFICATION (V/V)
1000
400
200
100
40
20
10
4
2
1
-75
V
CC
= 15V
V
O
= 10V
R
L
= 2k
Ω
-50
0.01
-50
-25
0
25
50
75
100
125
-25
0
25
50
75
100
125
TEMPERATURE (˚C)
TEMPERATURE (˚C)
LARGE SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT versus
FREQUENCY
TOTAL POWER DISSIPATION versus FREE AIR
TEMPERATURE
PHASE SHIFT
(right scale)
DIFFERENTIAL
VOLTAGE
AMPLIFICATION
(left scale)
180
10
1
100
R = 2kW
L
C
L
= 100pF
V
CC
= 15V
T
amb
= +125°C
1K
10K
100K
1M
10M
FREQUENCY (Hz)
90
0
TOTAL POWER DISSIPATION (mW)
100
250
225
200
175
150
125
100
75
50
25
0
-75
-50
-25
0
25
50
TEMPERATURE (˚C)
DIFFERENTIAL VOLTAGE
AMPLIFICATION (V/V)
V
CC
= 15V
No signal
No load
75
100
125
SUPPLY CURRENT PER AMPLIFIER versus
FREE AIR TEMPERATURE
COMMON MODE REJECTION RATIO versus
FREE AIR TEMPERATURE
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
-75
-50
-25
0
25
50
TEMPERATURE (˚C)
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
V
CC
= 15V
No signal
No load
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
T
amb
= +25°C
No signal
No load
75
100
125
0
2
4
6
8
10
12
14
16
SUPPLY VOLTAGE (V)
5/10