文档简介
针对目前基于深度学习的车道线检测方法普遍存在的实时性较差的问题,文章中提出了一种高效的车道线检测方法 LaneBezierNet。该方法从前置摄像头获取图像后,先使用数据增强技术对图像进行处理,然后通过贝塞尔曲线回归模型直接输出图像中每条车道线的贝塞尔曲线控制点坐标,结合贝塞尔曲线方程便可以得到车道线上的每个坐标点信息。实验结果表明,在 Tusimple 公开数据集上达到了 92.89%的较高准确率的同时,每秒传输帧数(FPS)达到了 116 bits/s。相较于基于图像分割的车道线检测方法,该方法在检测速度上有着明显提升。该算法在检测准确率未明显下降的前提下极大地提升了检测效率,更加符合实际项目需求。
评论
加载更多
推荐下载
查看更多
精选文集
推荐帖子