工程师电子制作故事:数字电源DIY设计
2012-10-24 来源:电子发烧友
重要硬件: 基于dsPIC30F系列MCU
控制板电源:反激式开关电源,输出4组独立电源。
驱动形式:采用250功率驱动光藕, 15V,-3.3V负电压,可驱动IGBT,MOSFET
输出方式:单级性,H桥工频变压器输出。
反馈方式:交流采样反馈。
软件设计: 采用SVPWM,单相空间矢量调制,优化开关控制时序。
控制思想: 内模重复控制原理 电压定时滞环 PI控制技术。
设计结果: 基本无频率误差,空载和满载电压相差不超过2%,空载和满载顺间转换电压相差不超过2%,并能在2个周期内定。
以上是带阻性负载的波形。
下图是电压滞环的控制波形。
同时也做了一个试验,在50HZ的基波上叠加150HZ的3次谐波,谐波幅值为基波的10%。
下图为输出波形,表明滞环跟踪良好。
目前存在一些问题,希望得到有关朋友的支持。经过系统的初步测试,电压重复控制原理对于电压波形的失真有较好的补偿作用。并且静态跟随精度高,动态响应快,不失为是一个比较理想的数字电源平台。当然主芯片可降为30F2020,保持30MIP的运算速度,但价格可以做到20元以下。对于中高档的应用场合比较乐观。
硬件上的问题:
本16位数字电源平台直流母线电源,采用60V直流供电。 但是做一个可变频的、高性能大功率电源,前级需要高功率因素的PFC电路。并且,要得到60V的直流电压,需要采用3525全桥软开关变换来得到。
重复控制用于逆变器的波形校正时,它的基本思想是假设前一个基波周期中出现的波形畸变将会在下一个基波周期的同一时间重复出现,在此假设条件下,控制器根据每个开关周期给定信号与反馈信号的误差来确定所需的校正信号,然后在下一个基波周期的同一时间将此信号叠加到原控制信号上,以消除以后各基波周期中将出现的重复畸变。因此,重复控制只对产生波形畸变的周期性扰动有抑制作用,但对非周期性扰动却不能抑制。然而实际中,产生逆变器波形畸变的扰动大部分都是周期性的,死区与负载所产生的扰动就是周期性扰动,因此重复控制技术可以同时对死区与负载引起的波形畸变有较好的校正作用。现在还没有带大量的感性负载做试验,把重心转移到解决目前困绕我的前级问题。
- 实时控制技术如何实现可靠且可扩展的高压设计
- 罗姆推出16位混合模拟-数字电源控制微控制器
- 基于广芯微UM3242F-RET6主控芯片实现DC-AC逆变数字电源方案
- STM32助你轻松解码数字电源设计
- 意法半导体推出支持MIPI I3C的高精度数字电源监测器芯片,提高电能利用率和可靠性
- 意法半导体强化数字电源二合一控制器,提高过载时电源稳定性和调压准确度
- 意法半导体单片数字电源控制器简化LED 照明应用设计,提高设计灵活性
- 大联大品佳集团推出基于Microchip产品的4KW图腾柱PFC数字电源方案
- 为什么推荐数字电源和电机控制项目要选择第三代C2000 MCU?
- 大联大世平集团推出基于NXP产品的2000W PFC数字电源解决方案
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- WIFI机器人DIY设计
- 数字电源架构
- 胆机专用变压器设计绕制DIY
- 数字电源指南