APT100GT60B2R(G)
APT100GT60LR(G)
600V, 100A, V
CE(ON)
= 2.1V Typical
Thunderbolt IGBT
®
The Thunderbolt IGBT
®
is a new generation of high voltage power IGBTs. Using
Non-Punch-Through Technology, the Thunderbolt IGBT
®
offers superior rugged-
ness and ultrafast switching speed.
Features
• Low Forward Voltage Drop
• Low Tail Current
• Integrated Gate Resistor
Low EMI, High Reliability
• RoHS Compliant
G
E
• RBSOA and SCSOA Rated
• High Frequency Switching to 50KHz
• Ultra Low Leakage Current
G
C
E
G
C
E
C
Maximum Ratings
Symbol Parameter
V
CES
V
GE
I
C1
I
C2
I
CM
SSOA
P
D
T
J
, T
STG
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current @ T
C
= 25°C
Continuous Collector Current @ T
C
= 100°C
Pulsed Collector Current
1
Switching Safe Operating Area @ T
J
= 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
All Ratings: T
C
= 25°C unless otherwise specified.
Ratings
600
Volts
±30
148
80
300
300A @ 600V
500
-55 to 150
Watts
°C
Amps
Unit
Static Electrical Characteristics
Symbol Characteristic / Test Conditions
V
(BR)CES
V
GE(TH)
V
CE(ON)
Collector-Emitter Breakdown Voltage (V
GE
= 0V, I
C
= 4mA)
Gate Threshold Voltage (V
CE
= V
GE
, I
C
= 1.5mA, T
j
= 25°C)
Collector Emitter On Voltage (V
GE
= 15V, I
C
= 100A, T
j
= 25°C)
Collector Emitter On Voltage (V
GE
= 15V, I
C
= 100A, T
j
= 125°C)
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 25°C)
2
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 125°C)
2
Gate-Emitter Leakage Current (V
GE
= ±30V)
Min
600
3
1.7
-
-
-
-
Typ
-
4
2.1
2.5
-
-
-
Max
-
5
Unit
Volts
2.5
-
25
μA
1000
300
nA
I
CES
I
GES
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed
.
Microsemi Website - http://www.microsemi.com
Dynamic Characteristic
Symbol
C
ies
C
oes
C
res
V
GEP
Q
g
Q
ge
Q
gc
SSOA
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector Charge
Switching Safe Operating Area
Turn-On Delay Time
Current Rise Time
Turn-Off Delay Time
Current Fall Time
Turn-On Switching Energy
4
Turn-On Switching Energy
5
APT100GT60B2R_LR(G)
Test Conditions
V
GE
= 0V, V
CE
= 25V
f = 1MHz
Gate Charge
V
GE
= 15V
V
CE
= 300V
I
C
= 100A
T
J
= 150°C, R
G
= 4.3Ω , V
GE
= 15V,
L = 100μH, V
CE
= 600V
Inductive Switching (25°C)
V
CC
= 400V
V
GE
= 15V
I
C
= 100A
R
G
= 4.3Ω
T
J
= +25°C
Min
-
-
-
-
-
-
-
300
-
-
-
-
-
-
-
-
Inductive Switching (125°C)
V
CC
= 400V
V
GE
= 15V
4
Typ
5150
475
295
8.0
460
40
210
Max
-
-
-
-
-
-
-
Unit
pF
V
nC
A
40
75
320
100
3250
3525
3125
40
75
350
100
3275
4650
3750
-
-
-
-
-
-
-
-
-
-
-
-
-
-
μJ
ns
μJ
ns
Turn-Off Switching Energy
6
Turn-On Delay Time
Current Rise Time
Turn-Off Delay Time
Current Fall Time
Turn-On Switching Energy
-
-
-
-
-
-
I
C
= 100A
R
G
= 4.3Ω
T
J
= +125°C
Turn-On Switching Energy
5
Turn-Off Switching Energy
6
Thermal and Mechanical Characteristics
Symbol Characteristic / Test Conditions
R
θJC
R
θJC
W
T
Torque
Junction to Case
(IGBT)
Junction to Case
(DIODE)
Package Weight
Terminals and Mounting Screws
Min
-
-
-
-
-
Typ
-
-
29.2
-
-
Max
0.25
Unit
°C/W
N/A
-
10
1.1
g
in·lbf
N·m
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, I
ces
includes both IGBT and FRED leakages.
3 See MIL-STD-750 Method 3471.
4 E
on1
is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to
z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in
fi
gure 21, but with a Silicon Carbide diode.
052-6297 Rev A 7 - 2008
5 E
on2
is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 E
off
is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 R
G
is external gate resistance not including gate driver impedance.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
200
V
GE
APT100GT60B2R_LR(G)
300
12, 13, &15V
10V
I
C
, COLLECTOR CURRENT (A)
250
9V
200
8V
= 15V
180
I
C
, COLLECTOR CURRENT (A)
160
140
120
100
80
60
40
20
0
0 0.5
1
1.5
2
2.5
3
3.5
4
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
T
C
= 25°C
T
C
= 125°C
150
T
C
= -55°C
100
7V
6V
50
0
0
5
10
15
20
25
30
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(V
GE
= 15V)
200
180
I
C
, COLLECTOR CURRENT (A)
160
140
120
100
80
60
40
20
0
0
2
4
6
8
10
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
I
C
= 200A
T
J
= 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
FIGURE 2, Output Characteristics (T
J
= 125°C)
16
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
I = 100A
C
T = 25°C
J
T
J
= -55°C
14
12
10
8
6
4
2
0
0
V
CE
= 120V
V
CE
= 300V
V
CE
= 480V
T
C
= 25°C
T
C
= 125°C
100
200
300
400
GATE CHARGE (nC)
500
FIGURE 4, Gate Charge
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
4
3.5
3
2.5
2
1.5
1
0.5
0
0
V
GE
= 15V.
250µs
PULSE TEST <0.5 %
DUTY CYCLE
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
8
10
12
14
16
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.15
0
6
I
C
= 50A
I
C
= 100A
I
C
= 200A
I
C
= 100A
I
C
= 50A
25
50
75
100
125
150
T
J
, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
200
I
C,
DC COLLECTOR CURRENT(A)
1.10
V
GS(TH)
, THRESHOLD VOLTAGE
1.05
(NORMALIZED)
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
180
160
140
120
100
80
60
40
20
0
-50 -25
0
25 50 75 100 125 150
T
C
, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Typical Performance Curves
35
t
d (OFF)
, TURN-OFF DELAY TIME (ns)
t
d(ON)
, TURN-ON DELAY TIME (ns)
30
25
20
15
10
5
0
V
CE
= 400V
T
J
= 25°C
,
or 125°C
R
G
= 4.3Ω
L = 100µH
APT100GT60B2R_LR(G)
450
400
350
300
250
200
150
100
50
0
V
CE
=
400V
R
G
=
4.3Ω
L = 100µH
V
GE
=15V,T
J
=25°C
V
GE
= 15V
V
GE
=15V,T
J
=125°C
25 50 75 100 125 150 175 200 225
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
250
R
G
=
4.3Ω, L
=
100
µ
H, V
CE
=
400V
0
0 25 50 75 100 125 150 175 200 225
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
200
180
R
G
=
4.3Ω, L
=
100
µ
H, V
CE
=
400V
200
t
r,
RISE TIME (ns)
t
f,
FALL TIME (ns)
160
140
120
100
80
60
40
T
J
=
25 or 125°C,V
GE
=
15V
T
J
=
125°C, V
GE
=
15V
150
100
50
T
J
=
25°C, V
GE
=
15V
20
0 25 50 75 100 125 150 175 200 225
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
12000
E
OFF
, TURN OFF ENERGY LOSS (µJ)
10000
8000
6000
4000
2000
T
J
=
25°C
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
G
25 50 75 100 125 150 175 200 225
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
16000
E
ON2
, TURN ON ENERGY LOSS (µJ)
14000
12000
T
J
=
125°C
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
G
0
0
0
T
J
=
125°C
10000
8000
6000
4000
2000
0
T
J
=
25°C
0 25 50 75 100 125 150 175 200 225
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
35000
SWITCHING ENERGY LOSSES (µJ)
30000
25000
20000
15000
10000
5000
0
E
on2,
50A
E
off,
200A
E
on2,
100A
E
off,
100A
E
off,
50A
V
= 400V
CE
= +15V
V
GE
T = 125°C
J
0 25 50 70 100 125 150 175 200 225
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
16000
SWITCHING ENERGY LOSSES (µJ)
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
G
0
E
on2,
200A
E
on2,
200A
14000
12000
10000
8000
6000
E
off,
200A
052-6297 Rev A 7 - 2008
4000
E
on2,
100A
2000
E
off,
50A
0
E
on2,
50A
E
off,
100A
10
20
30
40
50
R
G
, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
25
50
75
100
125
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
Typical Performance Curves
10,000
C
ies
5,000
C, CAPACITANCE ( F)
I
C
, COLLECTOR CURRENT (A)
350
300
250
200
150
100
50
0
APT100GT60B2R_LR(G)
P
1,000
500
C
0es
C
res
0
10
20
30
40
50
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
100
100 200 300 400 500 600 700
V
CE
, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0
0.30
Z
θ
JC
, THERMAL IMPEDANCE (°C/W)
0.25
0.9
0.20
0.7
0.15
0.5
0.10
Note:
PDM
t1
t2
0.3
0.05
0.1
0.05
0
10
-5
10
-4
SINGLE PULSE
Duty Factor D =
1
/
t2
Peak TJ = PDM x Z
θJC
+ TC
t
10
-3
10
-2
10
-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
100
F
MAX
, OPERATING FREQUENCY (kHz)
50
T = 75
°
C
C
T
J
(°C)
0.0587
Dissipated Power
(Watts)
0.0120
0.420
4.48
0.132
T
C
(°C)
0.0587
F
10
5
T = 125
°
C
J
D = 50 %
V
= 400V
CE
R = 4.3Ω
T = 100
°
C
C
max
= min (f
max
, f
max2
)
0.05
t
d(on)
+ t
r
+ t
d(off)
+ t
f
P
diss
- P
cond
E
on2
+ E
off
T
J
- T
C
R
θJC
Z
EXT
f
max1
=
f
max2
=
P
diss
=
Z
EXT
are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
1
G
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
30 40 50 60 70 80 90 100
I
C
, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
10 20