机器学习基础:案例研究(华盛顿大学)
共116课时 8小时3分27秒秒
简介
在本课程中,您将从一系列实用的案例研究中获得有关机器学习的动手经验。 在第一门课程的最后,您将研究如何基于房屋特征预测房价,从用户评论中分析情绪,检索感兴趣的文档,推荐产品以及搜索图像。 通过使用这些用例的动手实践,您将能够在广泛的领域中应用机器学习方法。
Carlos Guestrin
Amazon Professor of Machine Learning
Amazon Professor of Machine Learning
Computer Science and Engineering
Emily Fox
Amazon Professor of Machine Learning
Statistics
章节
- 课时1:welcome-to-this-course-and-specialization (42秒)
- 课时2:who-we-are (5分43秒)
- 课时3:machine-learning-is-changing-the-world (3分8秒)
- 课时4:why-a-case-study-approach (1分16秒)
- 课时5:specialization-overview (1分39秒)
- 课时6:how-we-got-into-ml (3分23秒)
- 课时7:who-is-this-specialization-for (4分41秒)
- 课时8:what-you-ll-be-able-to-do (57秒)
- 课时9:the-capstone-and-an-example-intelligent-application (6分31秒)
- 课时10:the-future-of-intelligent-applications (2分19秒)
- 课时11:starting-an-ipython-notebook (5分30秒)
- 课时12:creating-variables-in-python (7分15秒)
- 课时13:conditional-statements-and-loops-in-python (8分8秒)
- 课时14:creating-functions-and-lambdas-in-python (3分31秒)
- 课时15:starting-graphlab-create-loading-an-sframe (4分32秒)
- 课时16:canvas-for-data-visualization (4分9秒)
- 课时17:interacting-with-columns-of-an-sframe (4分29秒)
- 课时18:using-apply-for-data-transformation (5分17秒)
- 课时19:predicting-house-prices-a-case-study-in-regression (1分22秒)
- 课时20:what-is-the-goal-and-how-might-you-naively-address-it (3分47秒)
- 课时21:linear-regression-a-model-based-approach (5分34秒)
- 课时22:adding-higher-order-effects (4分11秒)
- 课时23:evaluating-overfitting-via-training-test-split (6分19秒)
- 课时24:training-test-curves (4分22秒)
- 课时25:adding-other-features (1分14秒)
- 课时26:other-regression-examples (3分28秒)
- 课时27:regression-ml-block-diagram (3分59秒)
- 课时28:loading-exploring-house-sale-data (7分11秒)
- 课时29:splitting-the-data-into-training-and-test-sets (2分34秒)
- 课时30:learning-a-simple-regression-model-to-predict-house-prices-from-house-size (3分54秒)
- 课时31:evaluating-error-rmse-of-the-simple-model (2分29秒)
- 课时32:visualizing-predictions-of-simple-model-with-matplotlib (4分52秒)
- 课时33:inspecting-the-model-coefficients-learned (1分18秒)
- 课时34:exploring-other-features-of-the-data (6分24秒)
- 课时35:learning-a-model-to-predict-house-prices-from-more-features (3分23秒)
- 课时36:applying-learned-models-to-predict-price-of-an-average-house (5分7秒)
- 课时37:applying-learned-models-to-predict-price-of-two-fancy-houses (7分20秒)
- 课时38:analyzing-the-sentiment-of-reviews-a-case-study-in-classification (38秒)
- 课时39:what-is-an-intelligent-restaurant-review-system (4分23秒)
- 课时40:examples-of-classification-tasks (4分51秒)
- 课时41:linear-classifiers (5分6秒)
- 课时42:decision-boundaries (3分57秒)
- 课时43:training-and-evaluating-a-classifier (4分25秒)
- 课时44:whats-a-good-accuracy (3分10秒)
- 课时45:false-positives-false-negatives-and-confusion-matrices (6分28秒)
- 课时46:learning-curves (5分36秒)
- 课时47:class-probabilities (1分53秒)
- 课时48:classification-ml-block-diagram (3分30秒)
- 课时49:loading-exploring-product-review-data (2分53秒)
- 课时50:creating-the-word-count-vector (2分5秒)
- 课时51:exploring-the-most-popular-product (4分37秒)
- 课时52:defining-which-reviews-have-positive-or-negative-sentiment (4分32秒)
- 课时53:training-a-sentiment-classifier (3分17秒)
- 课时54:evaluating-a-classifier-the-roc-curve (4分24秒)
- 课时55:applying-model-to-find-most-positive-negative-reviews-for-a-product (4分43秒)
- 课时56:exploring-the-most-positive-negative-aspects-of-a-product (4分41秒)
- 课时57:document-retrieval-a-case-study-in-clustering-and-measuring-similarity (35秒)
- 课时58:what-is-the-document-retrieval-task (1分31秒)
- 课时59:word-count-representation-for-measuring-similarity (6分57秒)
- 课时60:prioritizing-important-words-with-tf-idf (3分42秒)
- 课时61:calculating-tf-idf-vectors (5分29秒)
- 课时62:retrieving-similar-documents-using-nearest-neighbor-search (2分23秒)
- 课时63:clustering-documents-task-overview (2分28秒)
- 课时64:clustering-documents-an-unsupervised-learning-task (4分39秒)
- 课时65:k-means-a-clustering-algorithm (4分0秒)
- 课时66:other-examples-of-clustering (6分2秒)
- 课时67:clustering-and-similarity-ml-block-diagram (7分1秒)
- 课时68:loading-exploring-wikipedia-data (5分21秒)
- 课时69:exploring-word-counts (5分53秒)
- 课时70:computing-exploring-tf-idfs (7分9秒)
- 课时71:computing-distances-between-wikipedia-articles (5分38秒)
- 课时72:building-exploring-a-nearest-neighbors-model-for-wikipedia-articles (3分18秒)
- 课时73:examples-of-document-retrieval-in-action (4分16秒)
- 课时74:recommender-systems-overview (41秒)
- 课时75:where-we-see-recommender-systems-in-action (19秒)
- 课时76:building-a-recommender-system-via-classification (4分3秒)
- 课时77:collaborative-filtering-people-who-bought-this-also-bought (6分15秒)
- 课时78:effect-of-popular-items (1分5秒)
- 课时79:normalizing-co-occurrence-matrices-and-leveraging-purchase-histories (6分10秒)
- 课时80:the-matrix-completion-task (5分18秒)
- 课时81:recommendations-from-known-user-item-features (6分0秒)
- 课时82:predictions-in-matrix-form (3分45秒)
- 课时83:discovering-hidden-structure-by-matrix-factorization (7分32秒)
- 课时84:bringing-it-all-together-featurized-matrix-factorization (30秒)
- 课时85:a-performance-metric-for-recommender-systems (5分30秒)
- 课时86:optimal-recommenders (2分10秒)
- 课时87:precision-recall-curves (7分12秒)
- 课时88:recommender-systems-ml-block-diagram (4分53秒)
- 课时89:loading-and-exploring-song-data (5分43秒)
- 课时90:creating-evaluating-a-popularity-based-song-recommender (5分8秒)
- 课时91:creating-evaluating-a-personalized-song-recommender (5分53秒)
- 课时92:searching-for-images-a-case-study-in-deep-learning (23秒)
- 课时93:what-is-a-visual-product-recommender (3分52秒)
- 课时94:using-precision-recall-to-compare-recommender-models (4分6秒)
- 课时95:application-of-deep-learning-to-computer-vision (5分41秒)
- 课时96:deep-learning-performance (3分5秒)
- 课时97:demo-of-deep-learning-model-on-imagenet-data (2分57秒)
- 课时98:other-examples-of-deep-learning-in-computer-vision (1分30秒)
- 课时99:challenges-of-deep-learning (2分22秒)
- 课时100:deep-features (6分44秒)
- 课时101:deep-learning-ml-block-diagram (3分11秒)
- 课时102:loading-image-data (3分53秒)
- 课时103:training-evaluating-a-classifier-using-raw-image-pixels (6分14秒)
- 课时104:training-evaluating-a-classifier-using-deep-features (8分9秒)
- 课时105:loading-image-data (2分54秒)
- 课时106:creating-a-nearest-neighbors-model-for-image-retrieval (1分56秒)
- 课时107:querying-the-nearest-neighbors-model-to-retrieve-images (5分42秒)
- 课时108:querying-for-the-most-similar-images-for-car-image (1分53秒)
- 课时109:displaying-other-example-image-retrievals-with-a-python-lambda (4分2秒)
- 课时110:you-ve-made-it (40秒)
- 课时111:deploying-an-ml-service (3分13秒)
- 课时112:what-happens-after-deployment (7分5秒)
- 课时113:open-challenges-in-ml (8分40秒)
- 课时114:where-is-ml-going (6分29秒)
- 课时115:whats-ahead-in-the-specialization (5分38秒)
- 课时116:thank-you (1分32秒)
猜你喜欢
热门下载
热门帖子