TinyML and Efficient Deep Learning Computing MIT 6.S965 Fall 2022
共40课时 1天18小时26分10秒秒
简介
TinyML and Efficient Deep Learning Computing MIT 6.S965 Fall 2022
章节
- 课时1:Basics of Neural Networks (1小时1分31秒)
- 课时2:Training Deep Nets with PyTorch (18分54秒)
- 课时3:Pruning and Sparsity (Part I) (1小时7分6秒)
- 课时4:Pruning and Sparsity (Part II) (1小时7分45秒)
- 课时5:Pruning and Sparsity (Part II) (1小时7分39秒)
- 课时6:Quantization (Part I) (1小时11分45秒)
- 课时7:Quantization (Part I) (1小时11分42秒)
- 课时8:Quantization (Part II) (1小时10分53秒)
- 课时9:Neural Architecture Search (Part I) (1小时4分0秒)
- 课时10:Neural Architecture Search (Part II) (1小时12分54秒)
- 课时11:Neural Architecture Search (Part II) (1小时12分50秒)
- 课时12:Neural Architecture Search (Part III) (1小时6分57秒)
- 课时13:Knowledge Distillation (1小时7分25秒)
- 课时14:Knowledge Distillation (1小时7分21秒)
- 课时15:MCUNet- Tiny Neural Network Design for Microcontrollers (1小时6分41秒)
- 课时16:MCUNet- Tiny Neural Network Design for Microcontrollers (1小时6分38秒)
- 课时17:Distributed Training and Gradient Compression (Part I) (1小时1分19秒)
- 课时18:Distributed Training and Gradient Compression (Part I) (1小时1分5秒)
- 课时19:Distributed Training and Gradient Compression (Part II) (57分32秒)
- 课时20:Distributed Training and Gradient Compression (Part II) (57分28秒)
- 课时21:On-Device Training and Transfer Learning (Part I) (1小时15分57秒)
- 课时22:On-Device Training and Transfer Learning (Part I) (1小时15分55秒)
- 课时23:On-Device Training and Transfer Learning (Part II) (1小时6分16秒)
- 课时24:On-Device Training and Transfer Learning (Part II) (1小时6分29秒)
- 课时25:TinyEngine - Efficient Training and Inference on Microcontrollers (1小时15分6秒)
- 课时26:TinyEngine - Efficient Training and Inference on Microcontrollers (1小时15分1秒)
- 课时27:Efficient Point Cloud Recognition (1小时14分53秒)
- 课时28:Efficient Point Cloud Recognition (1小时14分13秒)
- 课时29:Efficient Video Understanding and Generative Models (1小时37分46秒)
- 课时30:Efficient Video Understanding and Generative Models (1小时37分40秒)
- 课时31:Efficient Transformers (1小时18分8秒)
- 课时32:Efficient Transformers (1小时18分4秒)
- 课时33:Basics of Quantum Computing (38分38秒)
- 课时34:Basics of Quantum Computing (38分38秒)
- 课时35:Quantum Machine Learning (1小时9分1秒)
- 课时36:Noise-Robust Quantum Machine Learning (1小时8分57秒)
- 课时37:Course Summary (12分47秒)
- 课时38:Course Summary (12分49秒)
- 课时39:AI Model EfficiencyToolkit (AIMET) (45分15秒)
- 课时40:AI Model EfficiencyToolkit (AIMET) (45分12秒)
猜你喜欢
热门下载
热门帖子