本课程为精品课,您可以登录eeworld继续观看: What-'s Next继续观看 课时1:Welcome 课时2:What is Machine Learning 课时3:Supervised Learning 课时4:Unsupervised Learning 课时5:Model Representation 课时6:Cost Function 课时7:Cost Function - Intuition I 课时8:Cost Function - Intuition II 课时9:Gradient Descent 课时10:Gradient Descent Intuition 课时11:Gradient Descent For Linear Regression 课时12:What-'s Next 课时13:Matrices and Vectors 课时14:Addition and Scalar Multiplication 课时15:Matrix Vector Multiplication 课时16:Matrix Matrix Multiplication 课时17:Matrix Multiplication Properties 课时18:Inverse and Transpose 课时19:Multiple Features 课时20:Gradient Descent for Multiple Variables 课时21:Gradient Descent in Practice I - Feature Scaling 课时22:Gradient Descent in Practice II - Learning Rate 课时23:Features and Polynomial Regression 课时24:Normal Equation 课时25:Normal Equation Noninvertibility (Optional) 课时26:Basic Operations 课时27:Moving Data Around 课时28:Computing on Data 课时29:Plotting Data 课时30:Control Statements- for, while, if statements 课时31:Vectorization 课时32:Working on and Submitting Programming Exercises 课时33:Classification 课时34:Hypothesis Representation 课时35:Decision Boundary 课时36:Cost Function 课时37:Simplified Cost Function and Gradient Descent 课时38:Advanced Optimization 课时39:Multiclass Classification- One-vs-all 课时40:The Problem of Overfitting 课时41:Cost Function 课时42:Regularized Linear Regression 课时43:Regularized Logistic Regression 课时44:Non-linear Hypotheses 课时45:Neurons and the Brain 课时46:Model Representation I 课时47:Model Representation II 课时48:Examples and Intuitions I 课时49:Examples and Intuitions II 课时50:Multiclass Classification 课时51:Cost Function 课时52:Backpropagation Algorithm 课时53:Backpropagation Intuition 课时54:Implementation Note- Unrolling Parameters 课时55:Gradient Checking 课时56:Random Initialization 课时57:Putting It Together 课时58:Autonomous Driving 课时59:Deciding What to Try Next 课时60:Evaluating a Hypothesis 课时61:Model Selection and Train-Validation-Test Sets 课时62:Diagnosing Bias vs. Variance 课时63:Regularization and Bias-Variance 课时64:Learning Curves 课时65:Deciding What to Do Next Revisited 课时66:Prioritizing What to Work On 课时67:Error Analysis 课时68:Error Metrics for Skewed Classes 课时69:Trading Off Precision and Recall 课时70:Data For Machine Learning 课时71:Optimization Objective 课时72:Large Margin Intuition 课时73:Mathematics Behind Large Margin Classification (Optional) 课时74:Kernels I 课时75:Kernels II 课时76:Using An SVM 课时77:Unsupervised Learning- Introduction 课时78:K-Means Algorithm 课时79:Optimization Objective 课时80:Random Initialization 课时81:Choosing the Number of Clusters 课时82:Motivation I- Data Compression 课时83:Motivation II- Visualization 课时84:Principal Component Analysis Problem Formulation 课时85:Principal Component Analysis Algorithm 课时86:Choosing the Number of Principal Components 课时87:Reconstruction from Compressed Representation 课时88:Advice for Applying PCA 课时89:Problem Motivation 课时90:Gaussian Distribution 课时91:Algorithm 课时92:Developing and Evaluating an Anomaly Detection System 课时93:Anomaly Detection vs. Supervised Learning 课时94:Choosing What Features to Use 课时95:Multivariate Gaussian Distribution (Optional) 课时96:Anomaly Detection using the Multivariate Gaussian Distribution (Optional) 课时97:Problem Formulation 课时98:Content Based Recommendations 课时99:Collaborative Filtering 课时100:Collaborative Filtering Algorithm 课时101:Vectorization- Low Rank Matrix Factorization 课时102:Implementational Detail- Mean Normalization 课时103:Learning With Large Datasets 课时104:Stochastic Gradient Descent 课时105:Mini-Batch Gradient Descent 课时106:Stochastic Gradient Descent Convergence 课时107:Online Learning 课时108:Map Reduce and Data Parallelism 课时109:Problem Description and Pipeline 课时110:Sliding Windows 课时111:Getting Lots of Data and Artificial Data 课时112:Ceiling Analysis- What Part of the Pipeline to Work on Next 课时113:Summary and Thank You 课程介绍共计113课时,19小时28分58秒 机器学习 吴恩达 此课程将广泛介绍机器学习、数据挖掘与统计模式识别的知识。主题包括:(i) 监督学习(参数/非参数算法、支持向量机、内核、神经网络)。(ii) 非监督学习(聚类、降维、推荐系统、深度学习)。(iii) 机器学习的优秀案例(偏差/方差理论;机器学习和人工智能的创新过程)课程将拮取案例研究与应用,学习如何将学习算法应用到智能机器人(观感,控制)、文字理解(网页搜索,防垃圾邮件)、计算机视觉、医学信息学、音频、数据挖掘及其他领域上。 上传者:老白菜 猜你喜欢 OpenCL统一的异构编程 Microchip PIC18 Explorer开发板 Atmel汽车电子的未来趋势 通信应用中的差分电路设计技术 瑞萨电子国网电能表解决方案 无刷直流电机基础 - 驱动控制 TI 家电应用中电机驱动分类及参考设计简介 TINA-TI培训课程 热门下载 场效应晶体管及其集成电路 经典教材:《电子元器件及手工焊接》(7).pdf 单片机控制的LCD心电监护仪的设计 AMC7150cv资料 μPD7802808单片机的功能及应用 Verilog HDL语言的PPT教程。包括简介、逻辑概念、语法和示例。 遗传工具箱及代码 HDS组态软件功能演示工程 数字电路课程设计教学大纲.doc Digital Signal Processing Using MATLAB 3rd Edition, by Vinay K. Ingle and John G. Proakis.pdf 热门帖子 凭经验选择开关电源磁芯尺寸和类型 这是一则凭经验选择开关电源磁芯尺寸和类型的资料,可以参考一下。http://download.eeworld.com.cn/download/1962812701/551656凭经验选择开关电源磁芯尺寸和类型 快羊加鞭 半桥这类正激变换器输出可否用CLC滤波? 半桥这类正激变换器输出可否用CLC滤波?\0\0\0eeworldpostqq半桥这类正激变换器输出可否用CLC滤波?为半桥供电的直流电源近似恒压源,不能用C开始滤波。但若为半桥供电的直流电源近似恒流源,则必须用C开始滤波。这里所谓“开始”,指滤波所接的第一个元件。 xiefei 推荐一本Linux初学书籍 想学习Linux,不知道该从何下手,麻烦大家给推荐一本适合Linux初学者的书籍。推荐一本Linux初学书籍有一本书叫做鸟叔好像比较火来的。youluo发表于2014-6-1719:12有一本书叫做鸟叔好像比较火来的。 你说的是鸟哥的私房菜吧?初学看什么书呀,网上视频一大堆一大堆的学习一下这本应该偏向于,shell吧!同求,求一本通俗易懂,linux应用开发的入门,最好有电子版想看看 尚文博 STM8L的I/O STM8L的PC0/I2C_SDA的端口配置成推挽输出,让其输出高电平,Debug的时候发现相关寄存器的位可以置高,但是相应端口的引脚不能输出为高电平,可能是什么原因呢?STM8L的I/O那个引脚应该是纯开漏输出的引脚,不具有输出高电平的功能。如果确实这样,可以加上拉电阻。具体是不是这样请参考器件的数据手册。是这个问题,接一个上拉电阻就可以了。lcofjp发表于2015-1-2716:01那个引脚应该是纯开漏输出的引脚,不具有输出高电平的功能。如果确实这样 czx2014 关于TMS570LS3137外设驱动问题 请问,谁有TMS570LS3137在UC/OS操作系统下的CAN、AD、IIC相关的驱动程序啊?\0\0\0eeworldpostqq关于TMS570LS3137外设驱动问题只能熟悉3137,自己修改了! yuyin 实用高频基本电路集 实用高频基本电路集好东西,学习了!!!!!!!!!谢谢。楼主分享好东西,谢谢分享。好东西,下载学习了,谢谢LZ dontium 网友正在看 How To Track Down Common Mode Noise OVERCURRENT PROTECTION - 408.36 Electronics 1, Lec 1, Intro., Charge Carriers, Doping 电气过应力 (EOS) 1 (实验四)串口实验 串口RS232(八) 1.1 DLP 技术在增强现实抬头显示器应用中的优势 存储器系统设计(五)