本课程为精品课,您可以登录eeworld继续观看: Stochastic Gradient Descent Convergence继续观看 课时1:Welcome 课时2:What is Machine Learning 课时3:Supervised Learning 课时4:Unsupervised Learning 课时5:Model Representation 课时6:Cost Function 课时7:Cost Function - Intuition I 课时8:Cost Function - Intuition II 课时9:Gradient Descent 课时10:Gradient Descent Intuition 课时11:Gradient Descent For Linear Regression 课时12:What-'s Next 课时13:Matrices and Vectors 课时14:Addition and Scalar Multiplication 课时15:Matrix Vector Multiplication 课时16:Matrix Matrix Multiplication 课时17:Matrix Multiplication Properties 课时18:Inverse and Transpose 课时19:Multiple Features 课时20:Gradient Descent for Multiple Variables 课时21:Gradient Descent in Practice I - Feature Scaling 课时22:Gradient Descent in Practice II - Learning Rate 课时23:Features and Polynomial Regression 课时24:Normal Equation 课时25:Normal Equation Noninvertibility (Optional) 课时26:Basic Operations 课时27:Moving Data Around 课时28:Computing on Data 课时29:Plotting Data 课时30:Control Statements- for, while, if statements 课时31:Vectorization 课时32:Working on and Submitting Programming Exercises 课时33:Classification 课时34:Hypothesis Representation 课时35:Decision Boundary 课时36:Cost Function 课时37:Simplified Cost Function and Gradient Descent 课时38:Advanced Optimization 课时39:Multiclass Classification- One-vs-all 课时40:The Problem of Overfitting 课时41:Cost Function 课时42:Regularized Linear Regression 课时43:Regularized Logistic Regression 课时44:Non-linear Hypotheses 课时45:Neurons and the Brain 课时46:Model Representation I 课时47:Model Representation II 课时48:Examples and Intuitions I 课时49:Examples and Intuitions II 课时50:Multiclass Classification 课时51:Cost Function 课时52:Backpropagation Algorithm 课时53:Backpropagation Intuition 课时54:Implementation Note- Unrolling Parameters 课时55:Gradient Checking 课时56:Random Initialization 课时57:Putting It Together 课时58:Autonomous Driving 课时59:Deciding What to Try Next 课时60:Evaluating a Hypothesis 课时61:Model Selection and Train-Validation-Test Sets 课时62:Diagnosing Bias vs. Variance 课时63:Regularization and Bias-Variance 课时64:Learning Curves 课时65:Deciding What to Do Next Revisited 课时66:Prioritizing What to Work On 课时67:Error Analysis 课时68:Error Metrics for Skewed Classes 课时69:Trading Off Precision and Recall 课时70:Data For Machine Learning 课时71:Optimization Objective 课时72:Large Margin Intuition 课时73:Mathematics Behind Large Margin Classification (Optional) 课时74:Kernels I 课时75:Kernels II 课时76:Using An SVM 课时77:Unsupervised Learning- Introduction 课时78:K-Means Algorithm 课时79:Optimization Objective 课时80:Random Initialization 课时81:Choosing the Number of Clusters 课时82:Motivation I- Data Compression 课时83:Motivation II- Visualization 课时84:Principal Component Analysis Problem Formulation 课时85:Principal Component Analysis Algorithm 课时86:Choosing the Number of Principal Components 课时87:Reconstruction from Compressed Representation 课时88:Advice for Applying PCA 课时89:Problem Motivation 课时90:Gaussian Distribution 课时91:Algorithm 课时92:Developing and Evaluating an Anomaly Detection System 课时93:Anomaly Detection vs. Supervised Learning 课时94:Choosing What Features to Use 课时95:Multivariate Gaussian Distribution (Optional) 课时96:Anomaly Detection using the Multivariate Gaussian Distribution (Optional) 课时97:Problem Formulation 课时98:Content Based Recommendations 课时99:Collaborative Filtering 课时100:Collaborative Filtering Algorithm 课时101:Vectorization- Low Rank Matrix Factorization 课时102:Implementational Detail- Mean Normalization 课时103:Learning With Large Datasets 课时104:Stochastic Gradient Descent 课时105:Mini-Batch Gradient Descent 课时106:Stochastic Gradient Descent Convergence 课时107:Online Learning 课时108:Map Reduce and Data Parallelism 课时109:Problem Description and Pipeline 课时110:Sliding Windows 课时111:Getting Lots of Data and Artificial Data 课时112:Ceiling Analysis- What Part of the Pipeline to Work on Next 课时113:Summary and Thank You 课程介绍共计113课时,19小时28分58秒 机器学习 吴恩达 此课程将广泛介绍机器学习、数据挖掘与统计模式识别的知识。主题包括:(i) 监督学习(参数/非参数算法、支持向量机、内核、神经网络)。(ii) 非监督学习(聚类、降维、推荐系统、深度学习)。(iii) 机器学习的优秀案例(偏差/方差理论;机器学习和人工智能的创新过程)课程将拮取案例研究与应用,学习如何将学习算法应用到智能机器人(观感,控制)、文字理解(网页搜索,防垃圾邮件)、计算机视觉、医学信息学、音频、数据挖掘及其他领域上。 上传者:老白菜 猜你喜欢 你所不知道的C语言(jserv 黄敬群) 手把手教你学UCOSIII(正点原子) 血氧仪研讨专场 设计指南-数字电位器 研讨会:ams 投影照明 (MLA) 增强汽车与道路的沟通 IEEE推荐DIY:用树莓派和Kindle设计自行车电脑 华为物联网技术入门到精通 TI TMS570 安全技术在汽车中的运用 热门下载 常用元件3D封装库:RA电阻2W100R HA_FB_1.3.9_Asion 汉字取模VB源码,可以分析出汉字的结构,从而为实现LED上传提供方便 数字电视整转网络改造户均成本测算12.7 自适应预失真前馈功率放大系统分析 电磁兼容设计讲座(中兴通讯.ppt 严蔚敏 数据结构的配套代码 TCA6408,pdf(Low-Voltage 8-Bit I2C and SMBus I/O Expander) 磁电式传感器基础知识 基于DSP技术的音频处理器的设计 热门帖子 STM32F407延时时间 voiddelay(u32t){while(t--);}delay(0xffff);外接25M的晶振,那这句延时时间怎么计算,是1/168M再乘65535(0xffff)吗?STM32F407延时时间大约是1/168M*5*65535吧,每个循环大约要5个周期左 kelywu 周立功arm培训(全)PDF 周立功arm培训(全)PDF就凭周立功三个字,下载了。谢谢。看了一部分了,是一个从初步了解到深入了解ARM的好教程大有用处可以好好看看!顶一下下来看看looklook我要看啊:$:$下来看看,初学ARM谢谢thanksforsharing谢谢谢谢你谢谢楼主分享从初步了解到深入了解ARM的好教程zhichi!!顶一个,非常感谢楼主分享回复楼主bkkman的帖子初入门ARM收集了,谢谢了 bkkman TI DSP TMS320C66x学习笔记之内联指令(c6x.h中文注释) /*****************************************************************************//*C6X.Hv7.4.12*//*****************************************************************************/#includevect.htypedefdouble__f Aguilera 求助各位工程师,关于开关电源对载波通信的影响 各位工程师,小弟最近新接手一个案子,载波通信用开关电源,由于不太了解载波通信,对开关电源对载波通信的影响不清楚,求助大家帮忙分析一下开关电源是怎样影响通信灵敏度的?求助各位工程师,关于开关电源对载波通信的影响开关电源不会对载波通信灵敏度有影响吧?开关电源通常只会对通信产生开关频率(以及谐波频率)的干扰。只要做好开关电源输入输出处滤波,应该不会对通信有很大影响。开关电源本身的噪声较大,如果其噪声频谱覆盖了载波频率,那么就会造成载波信号的信噪比下降,影响通讯质量、距离、误码率等等。如果噪声频 褚众 毕业设计 电路图看不懂 哪位好心人帮我讲讲 第一级放大电路第二级放大电路整流电路毕业设计电路图看不懂哪位好心人帮我讲讲一级滤波电路二级滤波电路模电书上应该都有。比较基础的微分/积分电路,带通滤波器而已。不知道你想要怎么讲?讲每个元件的作用还是要了解电流走向?每个元件的作用输入输出的公式翻了下电工学测控电路还是没搞懂你应该看模拟电路的运算放大器部分file:///C:/Users/zs/AppData/Local/Temp/moz-screenshot.pngfile:///C:/Users/zs/ iwwi 【EEWorld邀你来玩拆解】华为快充充电宝10000mAh 22.5W 感谢EEWorld邀你来拆解(第四期):热门充电宝大拆解活动,众所周知,充电宝是由于其方便携带的优点,被很多出行人员所钟爱,越来越小的体积,越来越大的容量一直是充电宝发展的方向,随着快充的不断普及,快充在充电宝上也得到了应用,本次有幸参与华为快充充电宝10000mAh22.5W的拆解活动,让我们进一步走进它,了解一下国货之光的充电宝。第一部分、产品介绍:我们首先了解一下这款华为快充充电宝10000mAh22.5W的技 秦天qintian0303 网友正在看 设计问题及难点讨论 基于ADC的技术 触摸屏实验-电阻型触摸屏 CMOS共源放大电路1 Ep22 Semiconductor Engineering 模拟电子技术基础(应用部分)概述 第一章第三讲 LASSO算法