- 本课程为精品课,您可以登录eeworld继续观看:
- Attack ML Models (3)
- 继续观看
课时1:The Next Step for Machine Learning
课时2:Anomaly Detection (1)
课时3:Anomaly Detection (2)
课时4:Anomaly Detection (3)
课时5:Anomaly Detection (4)
课时6:Anomaly Detection (5)
课时7:Anomaly Detection (6)
课时8:Anomaly Detection (7)
课时9:Attack ML Models (1)
课时10:Attack ML Models (2)
课时11:Attack ML Models (3)
课时12:Attack ML Models (4)
课时13:Attack ML Models (5)
课时14:Attack ML Models (6)
课时15:Attack ML Models (7)
课时16:Attack ML Models (8)
课时17:Explainable ML (1)
课时18:Explainable ML (2)
课时19:Explainable ML (3)
课时20:Explainable ML (4)
课时21:Explainable ML (5)
课时22:Explainable ML (6)
课时23:Explainable ML (7)
课时24:Explainable ML (8)
课时25:Life Long Learning (1)
课时26:Life Long Learning (2)
课时27:Life Long Learning (3)
课时28:Life Long Learning (4)
课时29:Life Long Learning (5)
课时30:Life Long Learning (6)
课时31:Life Long Learning (7)
课时32:Meta Learning – MAML (1)
课时33:Meta Learning – MAML (2)
课时34:Meta Learning – MAML (3)
课时35:Meta Learning – MAML (4)
课时36:Meta Learning – MAML (5)
课时37:Meta Learning – MAML (6)
课时38:Meta Learning – MAML (7)
课时39:Meta Learning – MAML (8)
课时40:Meta Learning – MAML (9)
课时41:Meta Learning - Gradient Descent as LSTM (1)
课时42:Meta Learning - Gradient Descent as LSTM (2)
课时43:Meta Learning - Gradient Descent as LSTM (3)
课时44:Meta Learning – Metric-based (1)
课时45:Meta Learning – Metric-based (2)
课时46:Meta Learning – Metric-based (3)
课时47:Meta Learning - Train+Test as RNN
课时48:More about Auto-encoder (1)
课时49:More about Auto-encoder (2)
课时50:More about Auto-encoder (3)
课时51:More about Auto-encoder (4)
课时52:Network Compression (1)
课时53:Network Compression (2)
课时54:Network Compression (3)
课时55:Network Compression (4)
课时56:Network Compression (5)
课时57:Network Compression (6)
课时58:GAN (Quick Review)
课时59:Flow-based Generative Model
课时60:Transformer
课时61:ELMO, BERT, GPT
课程介绍共计61课时,12小时45分47秒