机器学习基石
共65课时 15小时29分53秒秒
简介
介绍各领域中的机器学习使用者都应该知道的基础算法、理论及实用工具
讲师
老白菜
章节
- 课时1:Course Introduction (10分58秒)
- 课时2:What is Machine Learning (18分28秒)
- 课时3:Applications of Machine Learning (18分56秒)
- 课时4:Components of Machine Learning (11分45秒)
- 课时5:Machine Learning and Other Fields (10分21秒)
- 课时6:Perceptron Hypothesis Set (15分42秒)
- 课时7:Perceptron Learning Algorithm (PLA) (19分46秒)
- 课时8:Guarantee of PLA (12分37秒)
- 课时9:Non-Separable Data (12分55秒)
- 课时10:Learning with Different Output Space (17分26秒)
- 课时11:Learning with Different Data Label (18分12秒)
- 课时12:Learning with Different Protocol (11分9秒)
- 课时13:Learning with Different Input Space (14分13秒)
- 课时14:Learning is Impossible (13分32秒)
- 课时15:Probability to the Rescue (11分33秒)
- 课时16:Connection to Learning (16分46秒)
- 课时17:Connection to Real Learning (18分6秒)
- 课时18:Recap and Preview (13分44秒)
- 课时19:Effective Number of Lines (15分26秒)
- 课时20:Effective Number of Hypotheses (16分17秒)
- 课时21:Break Point (7分44秒)
- 课时22:Restriction of Break Point (14分18秒)
- 课时23:Bounding Function- Basic Cases (6分56秒)
- 课时24:Bounding Function- Inductive Cases (14分47秒)
- 课时25:A Pictorial Proof (16分1秒)
- 课时26:Definition of VC Dimension (13分10秒)
- 课时27:VC Dimension of Perceptrons (13分27秒)
- 课时28:Physical Intuition of VC Dimension (6分11秒)
- 课时29:Interpreting VC Dimension (17分13秒)
- 课时30:Noise and Probabilistic Target (17分1秒)
- 课时31:Error Measure (15分10秒)
- 课时32:Algorithmic Error Measure (13分46秒)
- 课时33:Weighted Classification (16分54秒)
- 课时34:Linear Regression Problem (10分8秒)
- 课时35:Linear Regression Algorithm (20分2秒)
- 课时36:Generalization Issue (20分34秒)
- 课时37:Linear Regression for Binary Classification (11分23秒)
- 课时38:Logistic Regression Problem (14分33秒)
- 课时39:Logistic Regression Error (15分58秒)
- 课时40:Gradient of Logistic Regression Error (15分38秒)
- 课时41:Gradient Descent (19分18秒)
- 课时42:Linear Models for Binary Classification (21分35秒)
- 课时43:Stochastic Gradient Descent (11分39秒)
- 课时44:Multiclass via Logistic Regression (14分18秒)
- 课时45:Multiclass via Binary Classification (11分35秒)
- 课时46:Quadratic Hypothesis (23分47秒)
- 课时47:Nonlinear Transform (9分52秒)
- 课时48:Price of Nonlinear Transform (15分37秒)
- 课时49:Structured Hypothesis Sets (9分36秒)
- 课时50:What is Overfitting (10分45秒)
- 课时51:The Role of Noise and Data Size (13分36秒)
- 课时52:Deterministic Noise (14分7秒)
- 课时53:Dealing with Overfitting (10分49秒)
- 课时54:Regularized Hypothesis Set (19分16秒)
- 课时55:Weight Decay Regularization (24分8秒)
- 课时56:Regularization and VC Theory (8分15秒)
- 课时57:General Regularizers (13分28秒)
- 课时58:Model Selection Problem (16分0秒)
- 课时59:Validation (13分24秒)
- 课时60:Leave-One-Out Cross Validation (16分6秒)
- 课时61:V-Fold Cross Validation (10分41秒)
- 课时62:Occam-'s Razor (10分8秒)
- 课时63:Sampling Bias (11分50秒)
- 课时64:Data Snooping (12分28秒)
- 课时65:Power of Three (8分49秒)
猜你喜欢
热门下载
热门帖子