机器学习技法
共65课时 16小时4分32秒秒
简介
线性支持向量机、对偶支持向量机、核型支持向量机、软式支持向量机、核逻辑回归、支持向量回归
01_Linear_Support_Vector_Machine
02_Dual_Support_Vector_Machine
03_Kernel_Support_Vector_Machine
04_Soft-Margin_Support_Vector_Machine
05_Kernel_Logistic_Regression
06_Support_Vector_Regression
07_Blending_and_Bagging
08_Adaptive_Boosting
09_Decision_Tree
10_Random_Forest
11_Gradient_Boosted_Decision_Tree
12_Neural_Network
13_Deep_Learning
14_Radial_Basis_Function_Network
15_Matrix_Factorization
16_Finale
02_Dual_Support_Vector_Machine
03_Kernel_Support_Vector_Machine
04_Soft-Margin_Support_Vector_Machine
05_Kernel_Logistic_Regression
06_Support_Vector_Regression
07_Blending_and_Bagging
08_Adaptive_Boosting
09_Decision_Tree
10_Random_Forest
11_Gradient_Boosted_Decision_Tree
12_Neural_Network
13_Deep_Learning
14_Radial_Basis_Function_Network
15_Matrix_Factorization
16_Finale
章节
- 课时1:Course Introduction (4分7秒)
- 课时2:Large-Margin Separating Hyperplane (14分17秒)
- 课时3:Standard Large-Margin Problem (19分16秒)
- 课时4:Support Vector Machine (15分33秒)
- 课时5:Reasons behind Large-Margin Hyperplane (13分31秒)
- 课时6:Motivation of Dual SVM (15分54秒)
- 课时7:Lagrange Dual SVM (18分50秒)
- 课时8:Solving Dual SVM (14分19秒)
- 课时9:Messages behind Dual SVM (11分18秒)
- 课时10:Kernel Trick (20分23秒)
- 课时11:Polynomial Kernel (12分16秒)
- 课时12:Gaussian Kernel (14分43秒)
- 课时13:Comparison of Kernels (13分35秒)
- 课时14:Motivation and Primal Problem (14分28秒)
- 课时15:Dual Problem (7分38秒)
- 课时16:Messages behind Soft-Margin SVM (13分44秒)
- 课时17:Model Selection (9分57秒)
- 课时18:Soft-Margin SVM as Regularized Model (13分40秒)
- 课时19:SVM versus Logistic Regression (10分18秒)
- 课时20:SVM for Soft Binary Classification (9分37秒)
- 课时21:Kernel Logistic Regression (16分22秒)
- 课时22:Kernel Ridge Regression (17分17秒)
- 课时23:Support Vector Regression Primal (18分44秒)
- 课时24:Support Vector Regression Dual (13分5秒)
- 课时25:Summary of Kernel Models (9分6秒)
- 课时26:Motivation of Aggregation (18分54秒)
- 课时27:Uniform Blending (20分31秒)
- 课时28:Linear and Any Blending (16分48秒)
- 课时29:Bagging (Bootstrap Aggregation) (11分48秒)
- 课时30:Motivation of Boosting (12分47秒)
- 课时31:Diversity by Re-weighting (14分28秒)
- 课时32:Adaptive Boosting Algorithm (13分34秒)
- 课时33:Adaptive Boosting in Action (11分5秒)
- 课时34:Decision Tree Hypothesis (17分28秒)
- 课时35:Decision Tree Algorithm (15分20秒)
- 课时36:Decision Tree Heuristics in CRT (13分21秒)
- 课时37:Decision Tree in Action (8分44秒)
- 课时38:Random Forest Algorithm (13分6秒)
- 课时39:Out-Of-Bag Estimate (12分32秒)
- 课时40:Feature Selection (19分27秒)
- 课时41:Random Forest in Action (13分28秒)
- 课时42:Adaptive Boosted Decision Tree (15分6秒)
- 课时43:Optimization View of AdaBoost (27分25秒)
- 课时44:Gradient Boosting (18分20秒)
- 课时45:Summary of Aggregation Models (11分19秒)
- 课时46:Motivation (20分36秒)
- 课时47:Neural Network Hypothesis (18分1秒)
- 课时48:Neural Network Learning (20分15秒)
- 课时49:Optimization and Regularization (19分29秒)
- 课时50:Deep Neural Network (21分30秒)
- 课时51:Autoencoder (15分17秒)
- 课时52:Denoising Autoencoder (8分31秒)
- 课时53:Principal Component Analysis (31分20秒)
- 课时54:RBF Network Hypothesis (12分55秒)
- 课时55:RBF Network Learning (20分8秒)
- 课时56:k-Means Algorithm (16分19秒)
- 课时57:k-Means and RBF Network in Action (9分46秒)
- 课时58:Linear Network Hypothesis (20分16秒)
- 课时59:Basic Matrix Factorization (16分32秒)
- 课时60:Stochastic Gradient Descent (12分22秒)
- 课时61:Summary of Extraction Models (9分12秒)
- 课时62:Feature Exploitation Techniques (16分11秒)
- 课时63:Error Optimization Techniques (8分40秒)
- 课时64:Overfitting Elimination Techniques (6分44秒)
- 课时65:Machine Learning in Action (12分59秒)
热门下载
热门帖子