本课程为精品课,您可以登录eeworld继续观看: 亚阈值电流继续观看 课时1:集成电路技术的意义 课时2:开关和逻辑 课时3:静态互补CMOS逻辑原理 课时4:静态互补CMOS逻辑门的设计和本节小结 课时5:集成电路工艺 课时6:集成电路版图 课时7:Scaling Down 课时8:MOS管原理 课时9:阈值电压 课时10:MOS管的基本电流方程 课时11:沟道长度调制效应 课时12:速度饱和 课时13:MOS管的手工分析模型 课时14:MOS管的电容 课时15:体效应 课时16:短沟效应、DIBL和本节小结 课时17:亚阈值电流 课时18:栅氧漏电流 课时19:扩散区pn结漏电流 课时20:栅极感应漏端漏电与本节小结 课时21:MOS管的温度特性 课时22:电压传输特性 课时23:VTC分析方法 课时24:开关阈值电压与本节小结 课时25:单级噪声容限 课时26:电压传输特性的稳定性 课时27:多级噪声容限及本节小结 课时28:复杂逻辑门的静态特性 课时29:用于延时分析的反相器模型 课时30:反相器的驱动电阻 课时31:反相器的负载电容 课时32:门延时的组成 课时33:反相器延时的设计准则 课时34:复杂逻辑门的驱动电阻 课时35:大扇入逻辑门的尺寸设计 课时36:考虑内部节点电容的延时模型 课时37:复杂逻辑门延时与输入图形的关系 课时38:逻辑门延时模型 课时39:本征延时 课时40:努力延时 课时41:关键路径 课时42:固定级数时的逻辑路径的尺寸优化 课时43:级数可变时逻辑路径的尺寸优化 课时44:逻辑路径尺寸优化方法小结 课时45:电路级优化 课时46:逻辑结构优化 课时47:本章总结 课时48:集成电路的功耗问题 课时49:逻辑门电容充电功耗模型 课时50:开关活动性 课时51:虚假翻转 课时52:直流通路引起的功耗和本节小结 课时53:CMOS逻辑门的静态功耗分量 课时54:亚阈值漏电流功耗 课时55:堆叠效应 课时56:本节小结 课时57:功耗优化指标 课时58:电源电压优化 课时59:VDD-尺寸的联合优化 课时60:VDD-VT联合优化 课时61:集成电路中的导线 课时62:互连线的寄生电容 课时63:互连线的寄生电阻 课时64:电感的影响和寄生效应小结 课时65:集总电容模型 课时66:分布rc模型 课时67:考虑互连线延时的电路延时 课时68:互连线延时的优化 课时69:电容串扰及其影响 课时70:克服电容串扰的方法 课时71:IR Drop 课时72:L(didt) 课时73:互连线的信号完整性小结 课时74:互连线的Scaling Down 课时75:组合逻辑 课时76:静态互补CMOS逻辑的特点 课时77:伪NMOS逻辑门的静态特性 课时78:伪NMOS逻辑门的传播延时 课时79:伪NMOS逻辑门的功耗与特点 课时80:差分串联电压开关逻辑 课时81:传输管逻辑的工作原理 课时82:传输管逻辑的延时和功耗 课时83:电平恢复技术 课时84:低阈值传输管 课时85:CMOS传输门 课时86:传输管逻辑信号的完整性问题 课时87:动态逻辑 课时88:动态逻辑基本原理 课时89:串联动态门 课时90:动态逻辑的速度 课时91:动态逻辑的功耗 课时92:电荷泄漏 课时93:电荷共享 课时94:电容耦合 课时95:组合逻辑类型的选择 课时96:时序逻辑和时序单元 课时97:双稳态原理 课时98:锁存器 课时99:主从边沿触发寄存器 课时100:时序参数的定义 课时101:时序参数对同步系统的影响 课时102:动态时序单元 课时103:本章总结 课时104:同步时序 课时105:时钟系统 课时106:时钟偏差 课时107:时钟抖动 课时108:时钟偏差和抖动的来源 课时109:减小时钟偏差和抖动的技术 课时110:时钟树 课时111:时钟技术小结 课时112:数据通路的特点 课时113:数字电路中的加法运算 课时114:静态互补CMOS全加器 课时115:静态互补CMOS全加器 课时116:传输管逻辑全加器 课时117:动态逻辑全加器 课时118:进位选择加法器 课时119:超前进位加法器 课时120:树形加法器 课时121:数字电路中的乘法运算 课时122:部分积产生 课时123:部分积累加 课时124:乘法器小结 课时125:本章小结 课程介绍共计125课时,1天5小时40分56秒 数字超大规模集成电路设计 清华大学 李翔宇 《数字大规模集成电路》是讲授数字大规模集成电路基础理论和知识的微电子专业研究生基础课,既是微电子专业学生的核心课程也是供电类专业学生学习数字集成电路设计的基础课程。课程以纳米和深亚微米CMOS工艺条件、系统级集成水平下的数字电路原理和设计技术为主要内容,具体包括器件和互连线的特性与模型、数字VLSI的关键指标与优化方法,常见逻辑类型、基本功能单元、重要片内子系统(时钟、电源网络)的工作原理和设计方法等。通过这门课的学习你可以理解如何用MOS管实现复杂的数字芯片、真正的数字集成电路和理想的数字电路之间有哪些差别、芯片的速度、功耗、鲁棒性、成本等方面的特性与哪些因素有关、又如何优化。 上传者:Lemontree 正在载入数据,请稍等... 猜你喜欢 一种简单可靠的超级电容充电方案:可以自动限制输入电流幅值 无线nrf24l01码盘步进电机随动 射频放大器设计 台湾中华大学田庆诚 深入了解:SoC FPGA嵌入式软件 全景图像对比及R-Car V2H 3D 全景可视系统演示 Microchip Microstick II开发工具 计算机网络(哈尔滨工业大学) 世健的ADI之路主题游第三站:物联网(IoT)站 热门下载 通用存储器 包括各种类型存储器的VHDL描述,如FIFO,双口RAM等VHDL代码库 TE|如何有效应对当下测试测量领域的挑战 矿井无线传感器网络的网关设计 复件 INTEL_CPU Linux环境并发服务器设计技术研究 射频em4100应用程序 智能手机血压计解决方案 无线传感器网络的节点自定位技术 cadence中文使用手册 工业电路板芯片级维修从入门到精通 热门帖子 STM32 Nucleo使用心得 得知自己得到了参团购买STM32Nucleo-L053R8感到很高兴,等待了几十天,板子终于到了,在网上了解到stm32l053是ST新出的一款低功耗的MCU,所以坤函数要用到最新的HAL库,而HAL库跟以前的f10xx和f4xx的库函数有很大区别。今天我就上官网下载了最新的HAL库,打开其中的GPIO的例程,看了一下HAL库,调用起来也挺方便的。下面晒出我板子的照片:明天继续深入研究其他的外设STM32Nucleo使用心得后面有更新吗?准备要买恭喜楼主……来请教的来了 宝宝ee 一则消息:关于移动医疗的市场预测 据速途研究院预测,2017年中国移动医疗市场规模有望达130亿元,移动医疗的软件和硬件相结合将带来市场的爆发式增长。据悉多家机构均对可穿戴医疗未来发展持乐观态度,2012年中国可穿戴医疗设备市场规模为4.2亿元,预计到2017年这一市场将达到47.7亿元,年复合增长率达60%,发展潜力巨大。\0\0\0eeworldpostqq一则消息:关于移动医疗的市场预测 john_wang CPLD与DSP管脚连接问题 如图CPLD的管脚TEA6,TEA7,TEA8,TEA9是与DSP的地址线连接的,如果用Quartus编程OUT0=TEA6,OUT1=TEA7,OUT2=TEA8,OUT3=TEA9,那是不是OUT0,OUT1,OUT2,OUT3管脚就相当于DSP的地址管脚了?CPLD与DSP管脚连接问题对系统理解的有些问题对于DSP来说,地址线一定是输出的,所以cpld不能对地址线赋值chenzhufly发表于2015-1-2712:30对系统理解的有些问题对于DS JasonnLee 请教28035 AD 顺序采样 28035,开发板示例代码采用同步采样方式,我改成顺序采样,结果不进入中断服务子程序,这个问题已经折磨我好几天了,请大神们看一下。代码如下:voidMotor_ADC_Config(void){InitAdc();//Forthisexample,inittheADCEALLOW;//ThisisneededtowritetoEALLOWprotectedregisterPieVectTable.ADCINT1=&adc_isr; yukang1744 2014 总结 14年的时光匆匆流逝,带走了我的青春带走了我的梦,​‌‌无情的时间,让我又大了一岁,但是我感谢时间让我变得成熟,明白了很多,也让我知道了什么才是最珍贵,最珍贵的,不是金钱,而是时间,时间让我变得成熟,站在14年与15年的交界处,停下脚步审视一下自己,前事不忘后事之师。2014这一年,让我感动,让我欢笑,让我悲伤。今天,让我们用释然与豁达向昨天作别:所有的悲伤、迷茫与挫折,不过是成长路上 RF-刘海石 Espier开发板资源帖汇总(标题越长越容易看到!!!!!)(2013年10月6日更新) 百度云盘Espier资料下载地址20131006更新【各版本区别】很多网友有些不清楚,首先先郑重介绍一下几个版本区别1、《第一期助学活动》使用的是V1.00版本在PCB上正面印有V1.00的字样。如下图,使用了牛角座扩展接口:2、《第二期助学活动》使用的是V1.20版本3、《开学季助学活动》使用的是V1.10/V1.20/V2.00版本这些版本中V1.00和其余版本的PIN定义不同,没有SPI和AD资源。其余版本管脚兼容,例程可以通用。各 kdy 网友正在看 条件查询控制-接口模型与控制流程 存储器系统设计(一) 简单的数字密码锁,计数器芯片CD4017进阶实验电路 程序的基本调试方法 AD21软件安装 PSpice save check point 作用 FIRE PUMPS - 230.90(A), Ex. 4 TI超低功耗MCU在触摸及工业楼宇自动化中的应用 - 5