本课程为精品课,您可以登录eeworld继续观看: 开关活动性继续观看 课时1:集成电路技术的意义 课时2:开关和逻辑 课时3:静态互补CMOS逻辑原理 课时4:静态互补CMOS逻辑门的设计和本节小结 课时5:集成电路工艺 课时6:集成电路版图 课时7:Scaling Down 课时8:MOS管原理 课时9:阈值电压 课时10:MOS管的基本电流方程 课时11:沟道长度调制效应 课时12:速度饱和 课时13:MOS管的手工分析模型 课时14:MOS管的电容 课时15:体效应 课时16:短沟效应、DIBL和本节小结 课时17:亚阈值电流 课时18:栅氧漏电流 课时19:扩散区pn结漏电流 课时20:栅极感应漏端漏电与本节小结 课时21:MOS管的温度特性 课时22:电压传输特性 课时23:VTC分析方法 课时24:开关阈值电压与本节小结 课时25:单级噪声容限 课时26:电压传输特性的稳定性 课时27:多级噪声容限及本节小结 课时28:复杂逻辑门的静态特性 课时29:用于延时分析的反相器模型 课时30:反相器的驱动电阻 课时31:反相器的负载电容 课时32:门延时的组成 课时33:反相器延时的设计准则 课时34:复杂逻辑门的驱动电阻 课时35:大扇入逻辑门的尺寸设计 课时36:考虑内部节点电容的延时模型 课时37:复杂逻辑门延时与输入图形的关系 课时38:逻辑门延时模型 课时39:本征延时 课时40:努力延时 课时41:关键路径 课时42:固定级数时的逻辑路径的尺寸优化 课时43:级数可变时逻辑路径的尺寸优化 课时44:逻辑路径尺寸优化方法小结 课时45:电路级优化 课时46:逻辑结构优化 课时47:本章总结 课时48:集成电路的功耗问题 课时49:逻辑门电容充电功耗模型 课时50:开关活动性 课时51:虚假翻转 课时52:直流通路引起的功耗和本节小结 课时53:CMOS逻辑门的静态功耗分量 课时54:亚阈值漏电流功耗 课时55:堆叠效应 课时56:本节小结 课时57:功耗优化指标 课时58:电源电压优化 课时59:VDD-尺寸的联合优化 课时60:VDD-VT联合优化 课时61:集成电路中的导线 课时62:互连线的寄生电容 课时63:互连线的寄生电阻 课时64:电感的影响和寄生效应小结 课时65:集总电容模型 课时66:分布rc模型 课时67:考虑互连线延时的电路延时 课时68:互连线延时的优化 课时69:电容串扰及其影响 课时70:克服电容串扰的方法 课时71:IR Drop 课时72:L(didt) 课时73:互连线的信号完整性小结 课时74:互连线的Scaling Down 课时75:组合逻辑 课时76:静态互补CMOS逻辑的特点 课时77:伪NMOS逻辑门的静态特性 课时78:伪NMOS逻辑门的传播延时 课时79:伪NMOS逻辑门的功耗与特点 课时80:差分串联电压开关逻辑 课时81:传输管逻辑的工作原理 课时82:传输管逻辑的延时和功耗 课时83:电平恢复技术 课时84:低阈值传输管 课时85:CMOS传输门 课时86:传输管逻辑信号的完整性问题 课时87:动态逻辑 课时88:动态逻辑基本原理 课时89:串联动态门 课时90:动态逻辑的速度 课时91:动态逻辑的功耗 课时92:电荷泄漏 课时93:电荷共享 课时94:电容耦合 课时95:组合逻辑类型的选择 课时96:时序逻辑和时序单元 课时97:双稳态原理 课时98:锁存器 课时99:主从边沿触发寄存器 课时100:时序参数的定义 课时101:时序参数对同步系统的影响 课时102:动态时序单元 课时103:本章总结 课时104:同步时序 课时105:时钟系统 课时106:时钟偏差 课时107:时钟抖动 课时108:时钟偏差和抖动的来源 课时109:减小时钟偏差和抖动的技术 课时110:时钟树 课时111:时钟技术小结 课时112:数据通路的特点 课时113:数字电路中的加法运算 课时114:静态互补CMOS全加器 课时115:静态互补CMOS全加器 课时116:传输管逻辑全加器 课时117:动态逻辑全加器 课时118:进位选择加法器 课时119:超前进位加法器 课时120:树形加法器 课时121:数字电路中的乘法运算 课时122:部分积产生 课时123:部分积累加 课时124:乘法器小结 课时125:本章小结 课程介绍共计125课时,1天5小时40分56秒 数字超大规模集成电路设计 清华大学 李翔宇 《数字大规模集成电路》是讲授数字大规模集成电路基础理论和知识的微电子专业研究生基础课,既是微电子专业学生的核心课程也是供电类专业学生学习数字集成电路设计的基础课程。课程以纳米和深亚微米CMOS工艺条件、系统级集成水平下的数字电路原理和设计技术为主要内容,具体包括器件和互连线的特性与模型、数字VLSI的关键指标与优化方法,常见逻辑类型、基本功能单元、重要片内子系统(时钟、电源网络)的工作原理和设计方法等。通过这门课的学习你可以理解如何用MOS管实现复杂的数字芯片、真正的数字集成电路和理想的数字电路之间有哪些差别、芯片的速度、功耗、鲁棒性、成本等方面的特性与哪些因素有关、又如何优化。 上传者:Lemontree 猜你喜欢 直播回放: 英飞凌智能电机驱动方案 直播回放: 赋能移动电源,贝能推出1800W全数字双向电源方案 linux内核编程入门 瑞萨电子国网电能表解决方案 机器人学 数据挖掘:理论与算法 清华大学(袁博) TI DLP® Labs - 光控制 如何用机智云新版平台开发一款4g智能设备 热门下载 [资料]-JIS B4313-2002 High-speed steel two-flute twist drills-Technical specifications.pdf [资料]-JIS B3512-2007 可编程序控制器.现场网络标准的试验和检定(1级)(修改件1).pdf [资料]-JIS B6203-1998 升降台式卧铣床 准确度的测试1.pdf [资料]-JIS F8521-2012.pdf [资料]-JIS F8522-2012.pdf [资料]-JIS D4311-1995 汽车用离合器衬片.pdf [-]-jis a1204-2009 土壤粒度分布的试验方法.pdf [资料]-JIS S2006-1994 Vacuum bottles.pdf [资料]-JIS D3636-2003 道路车辆.柴油机燃料喷射泵试验.枢轴型校准喷嘴.pdf [资料]-JIS C8152-1-2012 照明用白色発光ダイオード(LED)の測光方法-第1部:LEDパ.pdf 热门帖子 百问FB网络编程 - TCP编程简单示例 ##6.4TCP编程简单示例​服务器首先进行初始化操作:调用函数socket创建一个套接字,函数bind将这个套接字与服务器的公认地址绑定在一起,函数listen将这个套接字换成倾听套接字,然后调用函数accept来等待客户机的请求。过了一段时间后,客户机启动,调用socket创建一个套接字,然后调用函数connect来与服务器建立连接。连接建立之后,客户机和服务器通过读、写套接字来进行通信。###6.**4.1**服务器端代码参考:TCP/serve aleksib 太阳能LED照明系统优化后各电路中MOS管的VBA1302 太阳能LED照明系统的应用意义在世界各国,对绿色环保能源的需求趋势都与日俱增,越来越多行业开始重视环保元素在其行业内的发展潜力。太阳能作为一种现知的用途最为广泛的可再生能源,它在绿色产业中占有重要地位。太阳能与LED的结合,使太阳能LED照明系统具有了绿色环保和高效率的双重优点,促进这类系统的普及,对缓解能源短缺有重大意义,也符合绿色生态友好的行业发展趋势。 VBsemi 国家重大水利工程!赛思时间同步装置赋能珠三角水资源配置工程“西水东济” 珠三角水资源配置工程:国家重大水利工程、粤港澳大湾区重要民生项目珠三角水资源配置工程是全国172项节水供水重大水利工程中的标志性项目,已被纳入《粤港澳大湾区发展规划纲要》《国家十四五规划纲要》《国家水网建设规划纲要》等重要规划,同时也是国家水网以及广东省五纵五横水资源配置骨干网的重要组成部分。图源网络该工程西起广东佛山顺德西江干流鲤鱼洲,东至深圳公明水库,输水线路全长113.2千米,总投资约3 saisi 系统放大器的技术原理和应用场景 系统放大器是一种重要的电子设备,其技术原理和应用场景都具有一定的专业性和广泛性。以下是对系统放大器的技术原理和应用场景的详细介绍:一、技术原理系统放大器的工作原理基于电子器件的非线性特性,通过控制输入信号的幅度、相位或频率,实现信号的放大。它通常包含一个或多个晶体管、集成电路等电子元件,这些元件在电路中的工作状态决定了放大器的放大性能。当输入信号通过放大器时,它会被放大并输出一个更强的信号,而信号的某些特性如频率和相位则可以根据设计保持不变或者适当调整。二、应用场景系统放大器 维立信测试仪器 黄金搭档!RS485与Modbus还可以这样用? 在工业现场,Modbus设备与RS485的搭配无疑成为了自动化和通信领域的黄金搭档,两者相辅相成,成为业界公认的经典组合。这一黄金组合不仅广泛普及,而且相互强化,共同构筑了一个可靠、稳定且经济实惠的通信解决方案,为工业自动化带来了显著的便利和可靠性。RS485(RecommendedStandard485)RS485是一种差分信号传输标准,用于在多点网络中实现数据通信。它支持多主多从的通信模式,最多可以连接128个节点(可以使用中继器扩展到更多节点)。特点:1.差分信号 2020da 焊接熔池监控相机如何助力自动化生产 在焊接过程中,熔池的控制与监测是确保焊接质量和生产效率的关键因素。随着焊接技术的不断发展,自动化生产线的应用日益广泛,而焊接熔池监控相机的引入,更是为自动化焊接带来了革命性的突破。本文一起了解创想智控焊接熔池监控相机如何助力自动化生产,并提升焊接过程的精度、稳定性和效率。1.提升焊接质量焊接熔池是焊接过程中金属熔化区域,熔池的形态直接影响焊缝的质量。传统的人工肉眼的监控方式难以做到持续、精确的监测,容易受操作人员经验、环境因素等影响。而焊接熔池监控相机可以实时捕捉熔池的动态 北京创想智控 网友正在看 單元五 統整合實作:七段顯示器與時鐘_Part 5 系統分析與規劃 引言,状态空间描述方程的建立 分析建网_加入网络流程 尺度变换特性与奇偶虚实特性 博最科技BMS技术方案 十键输入指令TKY 习题课——第三章 Linux简介